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ABSTRACT 
 

 

Cephalic lobes are unique structures derived from the anterior pectoral fins, found in select 

myliobatid stingrays.  Many benthic batoids utilize undulatory locomotion and use their pectoral 

fins for both locomotion and prey capture.  Pelagic myliobatids that possess cephalic lobes 

utilize oscillatory locomotion, using their pectoral fins to locomote and their cephalic lobes for 

prey capture.  Despite differences in habitat usage and locomotor modes, these batoids feed on 

very similar benthic organisms.  The purpose of this study was to 1.) compare the morphology of 

the cephalic lobes and anterior pectoral fins in lobed and lobeless species, looking at skeletal 

elements, musculature and electrosensory pore distributions; 2.) compare prey capture 

kinematics in lobed and lobeless species and examine the role of the cephalic lobes in prey 

capture modulation due to elusive/non‐elusive prey; 3.) analyze multiple morphological 

and behavioral variables to establish any correlations to the presence of cephalic lobes.  

Radiography, dissections and staining techniques were employed to examine the morphology of 

the cephalic lobes and anterior pectoral fins in six species of batoids.  High speed videography 

was used to film prey capture behavior in five batoid species, using elusive and non-elusive prey.  

Continuous morphological and behavioral variables were used to determine any correlations with 

the presence of the cephalic lobes, taking phylogeny into account.  Results indicate that the 

skeletal components of the pectoral fins of oscillatory species are very different from pectoral 

fins of undulatory species as well as the cephalic lobes.  Second moment of area (I), showed that 

the cephalic lobes and pectoral fins in undulatory species had greater resistance to bending in 
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multiple directions and were also more flexible.  The cephalic lobes had a novel muscle layer 

compared to the pectoral fin musculature.  Electorsensory pores were absent from the anterior 

pectoral fins in oscillatory batoids, but numerous on the cephalic lobes and anterior pectoral fins 

in undulatory batoids.  The distribution of the electrosensory pores was uniform with the 

exception of Rhinoptera bonasus, which possessed higher pore numbers along the edges of the 

cephalic lobes.   Overall, the morphology of the cephalic lobes is distinct, but more similar to the 

pectoral fins of undulators compared to oscillators.   Kinematic data showed that species with 

cephalic lobes localize prey capture to the cephalic region of the body.  Lobed species were 

faster at pouncing and tenting prey, but slower during biting.  The cephalic lobes were able to 

move more in the vertical and horizontal plane compared to the anterior pectoral fins.  All 

species were able to modulate prey capture behavior to some degree.  Species lacking lobes spent 

more time handling elusive prey compared to non-elusive prey.  For all species, elusive prey 

were farther from the mouth during biting but prey escapes were rare.  Lobed species were 

overall faster in prey capture, but did not display more modulation or feeding success than 

lobeless species.  Phylogenetically corrected correlations showed that most morphological 

variables correlated to the appearance of the cephalic lobes, while kinematics variables did not.  

There was also a correlation among habitat, locomotion and the cephalic lobes.  The cephalic 

lobes may have played a key role in partitioning prey capture to the head region, maintaining 

dexterity in the lobes while allowing the pectoral fins to shift to oscillatory locomotion and 

consequently a pelagic lifestyle. 
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CHAPTER 1: GENERAL INTRODUCTION 

Form and function are closely linked, and often influence an organism’s ecology and 

consequently fitness (Bock, 1980; Barel et al. 1989).  The evolution of unique structures can be 

linked to morphological, behavioral and ecological changes in organisms that often help 

characterize clades.  Feathers allowed body temperature regulation and flight, opening up new 

aerial habitats and helping characterize the Aves clade, while mammary glands increased 

nourishment and development of offspring, ultimately paving the way for increased brain size in 

mammals (Wideliz et al., 2007).  Novel appendages with specialized functions for locomotion, 

sensory abilities, or feeding have arguably contributed to the immense success of arthropods 

(Angelini and Kaufman, 2005).  Spinnerets in spiders, derived from other appendages, allow 

web-building behavior to arise, opening up new niches and certainly unique methods of prey 

capture that help to define the clade (Pechmann et al., 2010).  In centipedes, the forcipules 

represent the only known example of locomotor appendages evolving into venomous prey 

capture appendages, concurrent with a shift from open habitat to leaf-litter habitat (Dugon et al., 

2012).  Ballistic tongue projection in chameleons allows feeding at lower temperatures compared 

to other lizards, as tongue projection is temperature-independent due to the elastic recoil 

mechanism involved (Anderson and Deban, 2010).  Novel muscle insertions, ligaments and bone 

elements in cyprinodontiforms resulted in a unique upper jaw protrusion mechanism that allowed 

a picking and scraping feeding mode to evolve (Hernandez et al., 2009).  In this study, I examine 

such an innovation in the family Myliobatidae. 



www.manaraa.com

  2 

Batoidea is a clade that includes approximately 630 species of skates and rays, which 

represents about half of the known chondrichthyan species (Aschliman et al., 2012).  Batoids are 

distinguished by their dorso-ventrally depressed bodies and enlarged pectoral fins.  Within the 

batoid clade, a derived family, Myliobatidae, possess unique appendages called cephalic lobes.  

These lobes have evolved from the anterior pectoral fins (Bigelow and Schroeder, 1953; Nishida, 

1990; Miyake et al., 1992) and are distinct from the pectoral fins.  While some rays have one 

continuous lobe, others have one discontinuous lobe or two completely separate lobes 

(McEachran et al., 1996).  Skeletal components of the pectoral fins and cephalic lobes consist of 

cartilaginous radials that extend from the propterygium, bifurcating at the distal ends (Bigelow 

and Schroeder, 1953).  The cephalic lobe musculature has not been studied.  Electrosensory 

pores, used to detect prey (Kalmijn, 1971; Tricas and Sisnero, 2004), are found on the ventral 

surface, including the pectoral fins and cephalic lobes (Chu and Wen, 1979; Sasko et al., 2006).  

The pectoral fins are used for locomotion and in most species lacking cephalic lobes, the 

pectoral fins are also used to form a tent around the prey, constraining and pinning prey to the 

substrate during feeding (Wilga et al., 2012).  In species with cephalic lobes, the functions of the 

pectoral fins have been partitioned such that the pectoral fins are used for primarily locomotion 

and the cephalic lobes are used for prey capture.  The lobes are used in prey detection, digging 

through the substrate, excavation and handling, (Smith and Merriner, 1985; Moss, 1977; Sasko et 

al., 2006) and in some rays, such as mobulids and mantas, the lobes help channel water and 

plankton into the mouth (Notarbartolo-di-Sciara and Hillyer, 1989).  With the lobes taking on the 

function of prey capture, the pectoral fins in these species have shifted to a different locomotor 

mode compared to other batoids. 
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Batoids can utilize undulatory locomotion (waves of bending traveling down the pectoral 

fin), oscillatory locomotion (flapping the pectoral fins), or intermediate locomotion, a 

combination of both (Rosenberger, 2001).  The majority of lobeless batoids are primarily 

undulatory, ideal for locomotion near the substrate, with high maneuverability and lower cruising 

speeds.  Lobed batoid species are all oscillatory, ideal for long distance, pelagic migrations and 

higher cruising speeds in the water column (Rosenberger, 2001).  Oscillatory species have stiffer 

pectoral fins compared to undulatory species as a result of this swimming style and the 

subsequent forces acting on the fins (Schaefer and Summers, 2005).  The switch from undulatory 

to oscillatory locomotion, along with the change from lobeless to lobed batoids, coincides with 

the shift from benthic to pelagic habitats. 

The majority of undulatory batoids are benthic, locomoting and feeding near the substrate 

(Compagno, 1977; McEachran and Carvalho, 2002).  Oscillatory batoids, however, are pelagic, 

locomoting in the water column at higher speeds (Rosenberger, 2001 Fontanella et al., 2013).  

Mobulid and manta species are truly pelagic, spending all of their time swimming and filter 

feeding in the water column (Notarbartolo-di-Sciara and Hillyer, 1989), while other lobed 

species feed in the benthos (Bigelow and Schroeder, 1953; Compagno, 1977). Lobeless and 

lobed batoids that feed on benthic organisms typically feed on polychaetes, bivalves, shrimp, fish 

and other crustaceans (Smith and Merriner, 1985; Michael, 1993; Compagno, 1997; Ebert and 

Cowley, 2003; Ebert and Bizzarro, 2007; Collins et al., 2007; Ajemian and Powers, 2012; 

Jacobsen and Bennett, 2013).  The only known examples of pelagic batoids without lobes are the 

pelagic stingray, Pteroplatytrygon violacea, and electric rays in the family Torpedinidae.  

Pteroplatytrygon violacea uses a combination of oscillatory and undulatory locomotion 

(Rosenberger, 2001) and wraps its pectoral fins around prey in the water column (Jordan, 2008).  
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Torpedo rays utilize body-caudal-fin locomotion to swim in the water column (Roberts, 1969) 

and wrap their pectoral fins around prey, stunning prey with electric organs (Wilson, 1953; Lowe 

et al., 1994).  The cephalic lobes may offer a unique evolutionary solution to the problem of the 

stiffness needed for oscillatory locomotion and the flexibility needed for prey capture.  

The purpose of this study was to examine: the morphology of the anterior pectoral fins 

and cephalic lobes, the function of the cephalic lobes during prey capture, and correlations of the 

presence/absence of cephalic lobes with morphological, behavioral and ecological variables to 

better understand the role of this evolutionary novelty in shaping the Myliobatidae clade.  Three 

lobeless batoids: Raja eglanteria (Bosc, 1800); yellow stingray, Urobatis jamaicensis (Cuvier, 

1816); Atlantic stingray Dasyatis sabina (Lesueur, 1824) and six lobed batoids: spotted eagle ray 

Aetobatus narinari (Euphrasen, 1790); cownose ray Rhinoptera bonasus (Mitchill, 1815); 

Mobula japonica (Müller and Henle, 1841); Mobula thurstoni, (Lloyd, 1908); Mobula munkiana 

(Notarbartolo-di-Sciara, 1987), Manta birostris (Walbaum, 1792) were used in this study, though 

Mobula and Manta species were grouped together because of small sample sizes.     

The morphological goal of this study was to compare the skeleton, muscle and 

electrosensory pores of the cephalic lobes and anterior pectoral fins.  Second moment of areas for 

skeletal cross sections, patterns of calcification, muscular complexity and pore distributions were 

examined.  The goal of the kinematic study was to compare prey capture kinematics and 

investigate modulatory ability in lobed and lobeless species with varying prey types.  I 

hypothesized that species with cephalic lobes would: have shorter prey capture durations, be 

more successful in retaining captured prey, and display a greater capacity to modulate prey 

capture behavior with different prey types.   After accounting for the phylogenetic relatedness of 
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the species, I hypothesized that both morphological and kinematic variables will correlate with 

the presence/absence of the cephalic lobes.   
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CHAPTER 2:  THE MORPHOLOGY OF THE CEPHALIC LOBES AND ANTERIOR 

PECTORAL FINS IN SIX SPECIES OF BATOIDS 1 

 

ABSTRACT  

 Many benthic batoids utilize their pectoral fins for both undulatory locomotion and 

feeding. Certain derived, pelagic species of batoids possess cephalic lobes, which evolved from 

the anterior pectoral fins. These species utilize the pectoral fins for oscillatory locomotion while 

the cephalic lobes are used for feeding. The goal of this article was to compare the morphology 

of the cephalic lobes and anterior pectoral fins in species that possess and lack cephalic lobes. 

The skeletal elements (radials) of the cephalic lobes more closely resembled the radials in the 

pectoral fin of undulatory species. Second moment of area (I), calculated from cephalic lobe 

radial cross sections, and the number of joints revealed greater flexibility and resistance to 

bending in multiple directions as compared to pectoral fin radials of oscillatory species. The 

cephalic lobe musculature was more complex than the anterior pectoral fin musculature, with an 

additional muscle on the dorsal side, with fiber angles running obliquely to the radials. In 

Rhinoptera bonasus, a muscle presumably used to help elevate the cephalic lobes is described. 

                                                             
1 This chapter has been previously published as: The morphology of the cephalic lobes and 
anterior pectoral fins in six species of batoids.  Samantha Mulvany and Philip J Motta, Journal of 
Morphology 274:1070-1083, Copyright © 2013, Wiley Periodicals, Inc.  License agreement 
number for reuse can be found in Appendix D. Samantha Mulvany and Philip J Motta designed 
the research. The research was performed and analyzed by Samantha Mulvany.  
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Electrosensory pores were found on the cephalic lobes (except Mobula japonica) and anterior 

pectoral fins of undulatory swimmers, but absent from the anterior pectoral fins of oscillatory 

swimmers. Pore distributions were fairly uniform except in R. bonasus, which had higher pore 

numbers at the edges of the cephalic lobes. Overall, the cephalic lobes are unique in their 

anatomy but are more similar to the anterior pectoral fins of undulatory swimmers, having more 

flexibility and maneuverability compared to pectoral fins of oscillatory swimmers. The 

maneuverable cephalic lobes taking on the role of feeding may have allowed the switch to 

oscillatory locomotion and hence, a more pelagic lifestyle.  

 

INTRODUCTION  

 Evolutionary novelties are of great interest in the study of functional morphology because 

they form the basis for defining clades and offer unique adaptive solutions to a changing 

environment. Furthermore, the evolution of novel structures can provide insight into how 

changes in form are linked to changes in ecology (Lachaise et al., 2000; Widelitz et al., 2007; 

Konow et al., 2008; Hernandez et al., 2009).  

 Five genera of derived rays (Aetobatus, Aetomylaeus, Rhinoptera, Mobula, and Manta) 

possess novel structures called cephalic lobes, which are modifications of the anterior portions of 

the pectoral fin (Bigelow and Schroeder, 1953; Nishida, 1990; Miyake et al., 1992). Rays can 

exhibit one continuous lobe, one discontinuous lobe, or two distinct lobes with the most derived 

rays exhibiting two distinct, movable lobes (McEachran et al., 1996). The lobes extend anteriorly 

beyond the head and in the most derived clades are clearly separated from the pectoral fins (Fig. 

2.1). The skeletal components of the cephalic lobes are similar to the pectoral fins, with series of 
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cartilaginous radials extending out from the propterygeal cartilage with bifurcations of the radials 

at the distal ends of the fin rays (Bigelow and Schroeder, 1953).  

In batoids, a series of laterally oriented cartilaginous radials compose a fin ray (Schaefer and 

Summers, 2005). Electrosensory canals line the ventral side of the cephalic lobes (Chu and Wen, 

1979), providing a means of detecting prey (Tricas and Sisneros, 2004). The internal anatomy of 

the cephalic lobes, which may include novel muscles and subdivisions, as well as their 

function(s), has not been closely examined.  

 The pectoral fins of batoids are used primarily for either undulatory or oscillatory 

locomotion. A combination of the two modes is frequent, with certain species falling within a 

gradient of undulation and oscillation (Rosenberger, 2001). With the derivation of the cephalic 

lobes from the anterior portion of the pectoral fins, the primary function of the lobes has evolved 

to prey capture, prey detection, and holding/trapping prey against the substrate as well as 

maneuvering it toward the mouth (Smith and Merriner, 1985; Sasko et al., 2006). In the most 

derived batoids (Manta and Mobula), the cephalic lobes are uncurled and positioned around the 

mouth during feeding, presumably directing water and plankton into the mouth (Notarbartolo-di-

Sciara and Hillyer, 1989).  

 Shifts in habitat also coincide with changes in locomotor modes and the appearance of the 

cephalic lobes. Basal batoids are generally bottom living, feed on benthic organisms (Compagno, 

1977), lack cephalic lobes and use undulatory locomotion (Campbell, 1951; Rosenberger and 

Westneat, 1999; Rosenberger, 2001), which allows the body to remain close to the substrate 

while moving. The undulatory mode of swimming also allows high maneuverability while still 

maintaining close contact to the substrate, though swimming velocity is low (Rosenberger, 
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2001). More derived, epi- benthic and pelagic rays utilize an oscillatory swimming mode, which 

is well suited for pelagic species that locomote at higher velocities and in most cases have 

cephalic lobes (Rosenberger, 2001). However, many epibenthic rays still feed on benthic 

organisms (Compagno, 1977; Jardas et al., 2004; Collins et al., 2007) and the emergence of the 

cephalic lobes is found in some of these epi-benthic species. Oscillatory locomotion is less 

maneuverable (Rosenberger, 2001), which may hinder prey capture. Kinetic cephalic lobes may 

facilitate prey restraint and capture for oscillatory batoids with reduced maneuverability (Sasko 

et al., 2006). In batoids, locomotor patterns correlate to calcification patterns in the radials of the 

pectoral fin (Schaefer and Summers, 2005). Undulatory batoids tend to have more catenated 

calcification, where chains of calcified cartilage are deposited along the radials, whereas 

oscillatory batoids tend to have crustal calcification, where a layer of calcified cartilage 

superficially coats the radials (Fig. 2.2). Oscillatory batoids also possess cross-bracings, with 

adjacent radials connected to one another via projections of cartilage, typically near the joints 

(Schaefer and Summers, 2005). Crustal calcification and cross-bracing provide more stiffness, 

which is presumably advantageous for oscillatory locomotion. In addition, some undulatory 

dasyatid rays exhibit joint staggering of the radials on the lateral margins of the pectoral fins, 

providing greater stiffness similar to how bricks are staggered when constructing a wall 

(Schaefer and Summers, 2005).  

 Because the role of the anterior pectoral fins shifts from locomotion to prey detection and 

capture with the advent of cephalic lobes, the predominant movements and thus stresses on the 

cephalic lobes will differ, resulting in structural and biomechanical changes in the supporting 

cartilaginous radials, as compared to the radials of the pectoral fins. As the cephalic lobes are 

used to manipulate prey, the radials may have less calcification to allow increased flexibility for 
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grasping behavior. However, the spotted eagle ray, Aetobatus narinari utilizes its single cephalic 

lobe to dig benthic prey out of the substrate, thus the skeletal structures will most likely be 

reinforced in ways that facilitate digging behavior. Furthermore, because the cephalic lobes 

house the electroreceptive ampullae of Lorenzini (Chu and Wen, 1979) they can serve for prey 

detection (Tricas and Sisneros, 2004). Analysis of the electroreceptor pore distributions and total 

pore counts on the cephalic lobes has yet to be done.  

 The purpose of this study was to examine the functional anatomy of cephalic lobes and 

compare their morphology to their evolutionary precursors, the anterior pectoral fins in closely 

related batoid species, exploring the evolutionary responses of form to changes in function and 

ecology. Six phylogenetically representative batoid groups were chosen to represent the diversity 

of cephalic lobe structure. Our goal was to compare the skeletal elements, musculature, and 

electrosensory pores of the cephalic lobes and pectoral fins to determine any phylogenetic 

patterns. The distribution of material (second moment of area) of the radials, calcification 

patterns and presence of cross-bracings in the skeletal elements were examined, along with 

complexity of muscular elements and the distribution and density of electrosensory pores across 

the cephalic lobes and pectoral fins.  

 

MATERIALS AND METHODS  

Specimens  

 Specimens of nine batoid species were collected from local fishermen and acquired through 

museum loans (Table 2.1). Because of low availability and similar anatomy, the Mobula and 

Manta data were combined, resulting in six groups representing a phylogenetic series of different 
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head shapes in batoids (Fig. 2.1) Museum specimens were preserved with formalin and held in 

70% ethanol, while specimens collected from local fishermen were kept frozen until dissected. 

Both male and female specimens were used. The specimens included predominantly mature 

animals, but all mobulid and manta specimens were neonates as mature animals were not 

available (Table 2.1).  

 

Musculature and Skeleton  

 A minimum of four specimens per species were used to investigate the musculature and 

skeletal components, with the exception of the mobulid and manta species (N = 1 each) which 

were combined (N = 4). The anterior portion of the pectoral fins and cephalic lobes were skinned 

and dissected to reveal the origin and insertion of each muscle, as well as the orientation and 

number of muscle layers. The cartilage was exposed to examine the number of joints and 

orientation of the radials. Radiographs and digital photographs of the muscle dissections and 

cartilage were taken with a PXS10–16W Kevex digital X-ray machine and a Canon PowerShot 

A710IS camera, and the photographs used to create illustrations of the skeletal elements and 

musculature using Adobe Illustrator CS2 version 12.0.1 (Adobe Systems, San Jose, CA).  

 The cephalic lobe and anterior pectoral fin ray cartilage from 2–3 specimens of each 

species with the exception of the mobulids was then dissected from the body and stained using a 

modified protocol from Deban (1997). Per museum restrictions, the fin ray cartilage from one 

cephalic lobe in one M. munkiana was allowed to be used to represent the mobulids. From all of 

the above specimens, a subsample of every fifth fin ray (from the most anterior radial) was 

detached from the propterygium and soaked in 95% ethanol for 12–24 h, then in an alcian blue 
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solution (700 ml 100% ethanol, 300 ml glacial acetic acid, and 700 mg alcian blue) for 4–24 h to 

stain the cartilage. The cartilage was then rinsed with distilled water and transferred to a dilute 

alizarin red solution (100 ml of distilled water with 10 drops of alizarin red S-saturated distilled 

water) for 1–3 days to further stain the calcified cartilage. The fin rays were then transversely cut 

every centimeter, starting from the medial margin to the lateral edge. In this manner, a total of 

approximately 3–5 fin rays were examined from each species and each fin ray yielded 3–5 cross 

sectional areas (CSAs). The sectioned radial was examined under a Wild stereozoom M3 

microscope and digitally photographed with a Canon PowerShot A710IS camera at 10–30x 

magnification. CSAs and diameters were calculated from the digital images using SigmaScan 

Pro v4.01.003 (Systat Software, San Jose, CA). The thickness of the crustal calcification was 

measured as well as the radius and distance from the lateral and dorso-ventral axes for the 

catenated calcification.  

 Calcification of the cartilaginous elements can vary by species, age and region of the body 

in elasmobranchs (Summers et al., 2004; Macesic and Summers, 2012). While calcification 

undoubtedly increases stiffness (Currey, 2002), the material properties of the radials are 

unknown. The majority of the radial is comprised of uncalcified cartilage and it is likely that this 

composite material comprised of both calcified and uncalcified regions contribute significantly to 

the stiffness of the radials (Seki et al., 2006; Chen et al., 2008; Meyers et al., 2013). Therefore, 

the second moment of area (I), was calculated for the radial cross sections as a whole and also 

for only the calcified portions of the radial cross sections. Initially ignoring the calcification, the 

equation for the second moment of area I of an elliptical CSA was used to determine I for each 

radial cross section in both the dorso-ventral and lateral plane: ILateral = π/4 x ab3, where a is the 

radius along the lateral axis and b is the radius along the dorso-ventral axis; Idorso-ventral = π/4 x 
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a1
3b1 (Fig. 2.3A). A ratio of ILateral/Idorso-ventral (ILat/IDV) was then taken for each cross section to 

determine the ability of the radial, at that region, to resist bending forces in the dorso-ventral and 

lateral plane. A ratio of one indicates equal resistance (a circular shape), a ratio greater than one 

indicates a higher resistance to bending in the lateral plane, and a ratio less than one indicates a 

higher resistance to bending in the dorso-ventral plane. Similar methods were used to determine I 

for only the calcified portions of each radial. The equation for a hollow ellipse was used for the 

crustal calcification, where Ihollow Lat = π/4(a1b1
3 – a2b2

3) and Ihollow DV = π/4(a1
3b1 – a2

3b2) (Fig. 

2.3B). The parallel axis theorem was used to determine I for the catenated calcification, where 

each circular calcification was measured with the equation: x[πr4/4 + πr2d], where r = radius of 

the calcified circular areas, d = distance from the neutral axis, with d = 0 for areas that lie on the 

neutral axis, and x is the number of circular calcifications within each cross section (Fig. 2.3C). 

For cross sections with multiple circular calcifications, the calcified Is were then summed to 

obtain the total calcified I for each radial CSA. A ratio of ILat/IDV was then taken for each cross 

section to compare resistance patterns. A Kruskal–Wallis nonparametric test was run using 

SigmaStat 3.1 (Systat Software, San Jose, CA) to determine any significant difference in ILat/IDV 

among species and among the anterior pectoral fins of oscillatory swimmers, undulatory 

swimmers and the cephalic lobes as well as differences in ILat/IDV within species (if ILat/IDV 

changes among and along the different radials sectioned), followed by a Dunn’s post hoc test.  

 

Electrosensory Pores  

 Electrosensory pore distributions across the ventral anterior regions of the pectoral fins and 

the entire ventral side of the cephalic lobes were calculated for R. eglanteria (n = 4), D. sabina (n 
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= 6), U. jamaicensis (n = 7), A. narinari (n = 5), R. bonasus (n = 7), and combined Mobula and 

Manta specimens, including Mobula thurstoni (n = 1), M. japonica (n = 2), M. munkiana (n = 1), 

and Manta birostris (n = 1). The propterygium was used as the medial border for all species. 

Because the anterior region of the pectoral fin is continuous with the rest of the pectoral fin, the 

first fin ray attached to the propterygium anterior to the mouth was used as the posterior border 

for species lacking cephalic lobes. Pores not plainly visible were dyed black by applying India 

ink to the skin surface and wiping away excess ink. The targeted area of the batoid was placed on 

an HP Scanjet 3570c digital scanner and scanned at 300–600 dpi. Electrosensory pores on the 

left and right side were counted and total pore counts were then averaged for each species. A 

Kruskal–Wallis nonparametric test was run in SigmaPlot 11.0 to determine if pore counts varied 

among the species or between left and right sides, with Dunn’s post hoc tests to determine which 

species differed. A pore map was constructed from the scans showing the pore distribution 

across the ventral side of the anterior pectoral fins and cephalic lobes for each species.  

 This study was approved by the University of South Florida Institutional Animal Care and 

Use Committee under protocol # T 3566 and T 2957.  

 

RESULTS  

Skeleton  

 The anterior pectoral fins are supported by the propterygium (protopterygium) and fin rays 

(series of radials) that extend distally from the propterygium in all species. For species that lack 

cephalic lobes, the orientation of the pectoral fin rays gradually shifts from a cranial orientation 

at the anterior portion of the pectoral fin to a lateral orientation at the middle portion of the 
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pectoral fin and a caudal orientation at the posterior portion of the fin (Fig. 2.4). For A. narinari, 

R. bonasus, and the mobulid and manta species, the pectoral fin rays only extend laterally. The 

fin rays of the cephalic lobes extend anteriorly for all species that possess lobes. The pectoral fin 

and cephalic lobe fin rays of all species bifurcate at their distal end at least once.  

 The base of each fin ray in the cephalic lobe in R. bonasus is semispherical and lies in 

socketsalong the propterygium, attached via connective tissue. Each fin ray in the A. narinari 

cephalic lobe, as well as that of the pectoral fins for all species examined, has a flat base and is 

attached to the surface of the propterygium by connective tissue. Clearing and staining show 

crustal calcification patterns for the pectoral fin and cephalic lobe radials of A. narinari, R. 

bonasus, and M. munkiana, and catenated calcification patterns for the pectoral fin radials in R. 

eglanteria, U. jamaicensis, and D. sabina (Fig. 2.2). Occasional cartilaginous cross bracings, 

connections between adjacent radials, are found in the pectoral fin radials of D. sabina, while the 

pectoral fin radials of A. narinari and R. bonasus are heavily cross-braced to the point that 

separating an individual radial is almost impossible.  

 The inter-radial joints of the pectoral fins are not staggered in any of the species with the 

exception of D. sabina. In D. sabina, only the bifurcated distal radials display joint staggering 

(Fig. 2.4B), as noted by Schaefer and Summers (2005). Cephalic lobe radials do not display joint 

staggering. The average number of joints per cm varied significantly among species (P-value: 

<0.001). Significant differences (P-value: ≤0.023) were found among all groups except R. 

bonasus cephalic lobe and U. jamaicensis pectoral fin radials (the two groups with the highest 

number of joints per cm), R. bonasus and A. narinari pectoral fin radials (the two groups with the 

lowest number of joints per cm), and D. sabina and R. eglanteria pectoral fin radials (Fig. 2.5).  
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 Measurements of radial CSA revealed inter and intraradial shape differences. For R. 

eglanteria, U. jamaicensis, D. sabina and the cephalic lobe radials of A. narinari, R. bonasus, 

and M. munkiana, the cross sectional shapes are oval and circular. For the pectoral fins of A. 

narinari and R. bonasus, the shapes also include irregular ovals and more rectangular cross 

sections (Fig. 2.2). In almost all cases, the radials for all species are dorso-ventrally compressed 

to some degree. Calcification patterns also occur, though patterns vary by species. For A. 

narinari, R. bonasus, and M. munkiana, crustal calcification occurs within the pectoral fin and 

cephalic lobe radials, while R. eglanteria, U. jamaicensis, and D. sabina have catenated 

calcification, with 1–3 calcified struts running through the dorsal and ventral edges of the radials. 

At the distal tips of the fin rays, any calcified struts run through the center of the radials.  

 The average ILat/IDV of the radial CSAs for all species ranges from 2.18 in A. narinari 

cephalic lobe to 8.02 in R. bonasus anterior pectoral fin, indicating that all the radials offer 

greater resistance to lateral bending than dorso-ventral bending (Fig. 2.6A). The average ILat/IDV 

for just the calcified regions of the radials ranges from 0.29 in U. jamaicensis to 5.53 in R. 

bonasus pectoral fin, indicating that the calcified regions in U. jamaicensis resist dorso-ventral 

bending while R. bonasus radials, as well as all the other species, resist lateral bending (Fig. 

2.6B). No significant differences in ILat/IDV were found among the radials (anterior to posterior, 

proximal to distal) within each species. (P-value: >0.05), therefore the data were combined for 

interspecific comparison. There was a significant difference in ILat/IDV for the radials among the 

species (P-value: <0.001). Post hoc tests showed that the ILat/IDV for the radial CSAs of A. 

narinari and Mobula cephalic lobe are significantly lower from all the other species (P- value: 

<0.05), indicating that the cephalic lobe radials of Mobula and A. narinari are more circular and 

withstand resistance from all directions, whereas the other groups withstand bending more in the 
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lateral plane (Fig. 2.6A).  

 The ILat/IDV ratios for the calcified regions of the radial are significantly different among 

the species (P-value: <0.001; Fig. 2.6B). Post hoc tests revealed that the groups with the highest 

ILat/IDV, R. bonasus and A. narinari pectoral fin radials and cephalic lobe radials, along with 

Mobula cephalic lobes do not differ significantly from each other. Raja eglanteria pectoral fins, 

D. sabina pectoral fins, A. narinari cephalic lobes and Mobula cephalic lobes do not significantly 

differ from each other forming a second group. The third group with the lowest ILat/IDV, U. 

jamaicensis, R. eglanteria, and D. sabina pectoral radials, do not significantly differ from each 

other.  

 When all pectoral fin radials were grouped by swimming mode and examined along with 

all the cephalic lobe radials, the ILat/IDV were significantly different (P-value: <0.001). Post hoc 

tests showed that ILat/IDV in the anterior pectoral fins of oscillatory species were significantly 

different from the other groups (P-value: <0.05). There was no significant difference between 

anterior pectoral fins of undulatory swimmers and the cephalic lobes (P-value: >0.05). This 

indicates that the cross-sectional shape of the cephalic lobe radials is more similar to that of 

pectoral fin radials of undulatory swimmers. That is, the radial cross sections of the cephalic 

lobes and the pectoral fins of undulatory swimmers are rounder compared to the cross sections of 

radials in oscillatory swimmers. However, when examining the calcified regions of the radials 

alone, there were significant differences (P-value: <0.001) with all three groups showing distinct 

differences. The undulatory swimmers had the lowest ILat/IDV while the oscillatory swimmers had 

the highest ILat/IDV, indicating the calcified regions of the radials in undulatory swimmers are 

suited to resist bending forces in all directions, as compared to the oscillatory swimmers which 

have calcified regions that best resist bending in the lateral plane (Table 2.2).  
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Musculature  

 The anterior pectoral fin musculature is highly conserved across species. The dorsal surface 

of the anterior pectoral fin is comprised of two muscle layers, the abductor superficialis and the 

abductor profundus, separated by a tendinous sheath (Fig. 2.7). The abductor superficialis 

originates on the propterygium and inserts on the tendinous sheath of the abductor profundus, 

with the muscle fibers running dorsal to ventral proceeding proximal to distal. The abductor 

profundus originates on the propterygium and inserts on the radials, with muscle fibers running 

ventro-dorsally and proximo-distally on the fin. The ventral surface of the anterior pectoral fins is 

similarly comprised of an adductor profundus and superficialis, originating on the propterygium 

and inserting into the radials or the tendinous sheath of the deeper muscle, respectively. The 

fibers of the adductor profundus run dorsoventrally and proximo-distally while those of adductor 

superficialis run ventro-dorsally and proximo-distally (Fig. 2.7).  

 Differences in the distal point of insertion into the tendinous sheath of abductor and 

adductor superficialis were found. In D. sabina and R. eglanteria, the abductor superficialis 

extended three fifths the length of the fin rays while the adductor superficialis extended half the 

length of the fin rays. In U. jamaicensis and M. thurstoni, the abductor superficialis extended 

four fifths down the length of the fin rays while the adductor superficialis extended three fifths 

the length of the fin rays. For R. bonasus and A. narinari, the superficialis muscles extended 

down the length of the entire pectoral fin to the most distal radial.  

 The cephalic lobe musculature in A. narinari, R. bonasus, and mobulid species (M. 

japonica, M. thurstoni, and M. munkiana) is comprised of three muscle layers on the dorsal side 



www.manaraa.com

  21 

of the radials. The most superficial layer, here termed the dorsal oblique, has muscle fibers that 

run obliquely to the radials (Fig. 2.8). In A. narinari, the dorsal oblique is very thick and is 

interspersed with white connective tissue, possibly collagen. In R. bonasus, the dorsal oblique is 

divided into superficial and deep divisions. The deep division is darker in color than the 

superficial layer. In mobulid species and A. narinari, the dorsal oblique is undivided. In A. 

narinari, R. bonasus, and Mobula, the dorsal oblique originates on the propterygium and inserts 

onto the muscle layer deep to it, the abductor superficialis. The dorsal oblique muscle in A. 

narinari was noticeably thicker than in other species.  

 Similar to the pectoral fin musculature, the abductor superficialis and abductor profundus 

muscles in the cephalic lobes of A. narinari, R. bonasus, and Mobula run in the same direction as 

the radials, originate on the propterygium, and insert onto the profundus and along the radials, 

respectively. The superficialis muscle fibers run dorsoventrally and proximo-distally while the 

profundus muscle runs ventro-dorsally and proximo-distally. Unlike the pectoral fin musculature, 

both superficialis muscles extend down the length of the lobe while the profundus muscles taper 

off at two fifths the length of the fin rays. However, the profundus muscles have multiple tendons 

that extend down the entire length of the fin rays, inserting distally on the cephalic lobe. On the 

ventral side of the cephalic lobes in A. narinari, R. bonasus, and Mobula, the adductor 

superficialis and adductor profundus originate on the propterygium and insert onto the adductor 

profundus and radials, respectively. Similar to the dorsal side of the cephalic lobes, the 

superficialis runs down the length of the radials while the profundus tapers to a muscular 

insertion two fifths down the length of the radials and tendons that extend to the distal edge of 

the cephalic lobes.  
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 In R. bonasus, there is a muscle located near the medio-dorsal side of the cephalic lobes, 

which originates from the neurocranium and inserts onto the most medial fin ray of the cephalic 

lobes (Fig. 2.9). This muscle, here termed the cephalic lobe levator, appears to elevate the antero-

medial portion of the cephalic lobes. Interestingly, the depressor rostri muscle in M. thurstoni 

inserts onto the ventral base of the cephalic lobes via an aponeurosis, contrary to Gonzalez-Isais 

(2003) who states that the depressor rostri inserts onto the lateral part of the nasal capsules via an 

aponeurosis.  

 

Electrosensory Pores  

 The qualitative distribution of the electrosensory pores on the surface of the pectoral fins 

and cephalic lobes is similar for all species with the exception of R. bonasus (Fig. 2.10). The 

electrosensory pores of the cephalic lobes of R. bonasus appear to increase in density around the 

edges of the cephalic lobes.  

 The number of electrosensory pores does not significantly differ from left side to right side 

on any species (P-value: >0.1). The total number of pores among species differs (P-value: 

<0.001), with the cephalic lobes of R. bonasus and A. narinari having the most pores and the 

manta/mobulid species having no visible pores on the cephalic lobes, and R. bonasus, A. 

narinari, and the manta/mobulid species having no visible electrosensory pores on the anterior 

pectoral fins (Fig. 2.11). Tukey’s post hoc test revealed three groups that differed in pore count 

(P-value: ≤0.001). Aetobatus narinari and R. bonasus cephalic lobes had the greatest number of 

pores. The second group formed U. jamaicensis, D. sabina, and R. eglanteria pectoral fins had 

fewer pores and the remaining species did not have any pores.  
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DISCUSSION  

 Cephalic lobes are anterior extensions of the pectoral fins found in some derived, 

oscillatory myliobatid rays (Bigelow and Schroeder, 1953; Nishida, 1990; Miyake et al., 1992). 

Having undergone a suite of morphological modifications to skeletal, muscular, and 

electrosensory components, the cephalic lobes have shifted from a once primarily locomotor 

function to the detection, capture, and manipulation of prey (Smith and Merriner, 1985; Sasko et 

al., 2006). In a similar manner, diversification of appendages and thus shifts in function and the 

emergence of novel locomotory, feeding, and reproductive behaviors have played key roles in 

the evolution of other taxa (Angelini and Kaufman, 2005; Pechmann et al., 2010). The separation 

of the cephalic lobes and pectoral fins may have aided myliobatids in the expansion into a 

pelagic niche via oscillatory locomotion while maintaining the ability to capture prey. Whereas a 

few other pelagic batoids exist without cephalic lobes, they use different forms of locomotion 

and feeding strategies. Torpedo electric rays, including Torpedo californica, utilize body-caudal 

fin propulsion (Roberts, 1969), leaving the pectoral fins free to wrap around and electrically stun 

prey prior to capture (Wilson, 1953; Belbenoit and Bauer, 1972; Michaelson et al., 1979; Lowe 

et al., 1994). The pelagic stingray Pteroplatytrygon violacea utilizes an intermediate locomotor 

mode between undulation and oscillation (Rosenberger, 2001) wrapping its pectoral fin around 

prey to capture it (Jordan et al., 2009). However, the majority of pelagic batoids employ 

oscillatory locomotion and possess cephalic lobes, which are used in feeding.  
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Skeleton 

 The skeletal anatomy of cephalic lobes is distinct from the anterior pectoral fins of basal 

batoids, and differs markedly from the pectoral fins of oscillatory species that possess cephalic 

lobes. While the cross sectional shapes of the pectoral fin radials in oscillatory species are quite 

diverse, encompassing rectangular, oval, diamond, and irregular shapes, the cross sectional 

shapes of the pectoral fin radials in undulatory species and the cephalic lobe radials of all 

examined species are more oval and circular. The second moment of area ratio for the radials 

disregarding calcification (ILat/IDV) differed among species, with A. narinari and Mobula cephalic 

lobes having the most circular radial CSAs and thus radials that resist bending equally in all 

directions (Fig. 2.6A). This pattern is biomechanically advantageous for structures that move in 

multiple planes and experience forces from multiple directions (Wainwright et al., 1980). The 

cephalic lobes encounter multidirectional forces, as the cephalic lobes are laterally extended and 

depressed during prey capture and oscillated dorso-ventrally during prey excavation (Sasko et 

al., 2006).  

 Nearly all of the radials of most species (with the exception of the cephalic lobe radials of 

A. narinari, M. munkiana, and R. bonasus) were dorso-ventrally flattened to some degree (Fig. 

2.2), meaning that the radials would actually be more biomechanically suited to resisting forces 

in the lateral plane than the dorso-ventral plane (as the cartilage is placed further away from the 

longitudinal neutral axis than the dorso-ventral neutral axis). This shape confers greater 

flexibility in the dorso-ventral axis which would be suitable for locomotory movement. This 

could also be the result of having a dorso-ventrally depressed body plan, requiring depression of 

the radials to maintain a flatter overall body shape and pectoral appendage. Dorso-ventrally 

depressed radials may also increase the area of pectoral fin and cephalic lobe muscle attachment, 
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as the dorsal and ventral musculature attach to the dorsal and ventral surfaces of the radials. For 

the oscillatory species in particular, heavy cross-bracing, in effect, transforms each individual fin 

ray of the pectoral fin into one collective structure, transferring force among all the fin rays. In a 

similar manner, abutting molariform teeth transfer forces laterally during compressive biting of 

hard prey (Nobiling, 1977). As oscillatory swimming requires a collective depression of all the 

fin rays during a downstroke (and similarly a collective elevation of the fin rays during an 

upstroke), it is advantageous to possess heavy cross bracings that mechanically link each radial 

to the adjacent radials. Thus, examining each individual radial may not be representative of how 

they are biomechanically utilized and how the forces act on them.  

 The lack of cross bracing and joint staggering (with the exception of D. sabina), along with 

increased number of joints, in the anterior pectoral fin of undulatory species and the cephalic 

lobes of oscillatory species may reflect the need for greater flexibility and maneuverability. 

Undulatory locomotion requires more independent fin rays, as multiple waves per fin length 

travel down the body (Rosenberger, 2001). At any given time, one fin ray along the body will be 

depressed while another fin ray at a different point along the body will be elevated. These 

undulatory species also capture prey with their pectoral fins, pinning prey against the substrate, 

forming a tent over the prey and maneuvering prey toward the mouth (Wilga et al., 2012), which 

requires flexibility. The proximal radials of R. bonasus cephalic lobes are spherical at their base 

and lie in sockets on the propterygium, no doubt providing a greater range of motion compared 

to the proximal radials of other species, which lie flat against the propterygium. This, coupled 

with the fact that the cephalic lobes of R. bonasus have the highest number of joints per cm, with 

A. narinari cephalic lobes being comparable to undulatory species (Fig. 2.5), suggests that the 

skeletal components of the cephalic lobes of R. bonasus, M. munkiana, and A. narinari are 
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highly flexible and maneuverable. All of these attributes make the cephalic lobes ideal for 

grasping and manipulation of prey (Sasko et al., 2006) and even digging through the substrate, as 

the eagle ray is known to do (Gudger, 1914).  

 Though the cephalic lobe radial ultrastructure is more similar to the pectoral fin radials in 

undulatory species, in terms of potential flexibility and maneuverability, the calcification patterns 

appeared to be phylogenetically, not functionally related. The pectoral radials of R. eglanteria, 

U. jamaicensis, and D. sabina displayed catenated calcification, with chains of calcified cartilage 

running along the dorsal and ventral sides of the radials. The cephalic lobes and pectoral fin 

radials of A. narinari and R. bonasus displayed crustal calcification, with calcified cartilage 

coating the entire radial. Crustal calcification is linked primarily to oscillatory swimmers, while 

catenated calcification is linked primarily to undulatory swimmers, with crustal calcification 

being the basal condition that was secondarily derived in Myliobatidae (Schaefer and Summers, 

2005). With catenated calcification being less energetically costly to produce and maintain, it is 

assumed that crustal calcification confers some benefit, presumably increased stiffness, to 

oscillatory swimmers (Schaefer and Summers, 2005). This suggests that secondarily derived 

crustal calcification evolved with a shift to oscillatory locomotion. Since the cephalic lobes 

display crustal calcification, this suggests that the cephalic lobes evolved after the shift to crustal 

calcification and oscillatory locomotion.  

 When comparing the second moment of area ratio (ILat/IDV) of the total radial cartilage to 

the calcified cartilage of the undulatory swimmers with catenated calcification (R. eglanteria, U. 

jamaicensis, and D. sabina), the calcified ILat/IDV values are closer to or less than one (Fig. 2.6B). 

A ratio of one indicates bending resistance in all planes, and a ratio less than one indicates 

greater resistance to bending in the dorso-ventral plane. Though the radials of these basal batoids 
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are dorso-ventrally flattened, the calcification patterns are well placed to resist bending in both 

lateral and dorso-ventral planes compared to the crustal calcification found in the more derived 

species (A. narinari, R. bonasus, and Mobula) which are well placed to resist bending in the 

lateral plane. Because no physical testing of resistance to bending was performed on the actual 

cephalic lobes or pectoral fins and the mineral content is unknown, the extent of influence that 

calcification has on the bending resistance of the structures cannot be determined. Because the 

radials are composed of a calcified outer region with a cartilaginous and more flexible inner 

region they can be considered composite materials (Vogel, 2003). Without knowing the material 

properties of the two regions, as well as that of the overlying skin and muscle, we can assume 

that the actual ILat/IDV values of the lobes and pectoral fins are some combination of Figures 2.6A 

and 2.6B. Regardless, it appears that the cephalic lobe radial architecture is best suited for 

manipulation and flexibility. 

  

Musculature  

 Although the cephalic lobes are derived from the anterior pectoral fins, there are marked 

anatomical differences in the muscle architecture and complexity. The origins and insertions of 

the muscles remain consistent, with the propterygium anchoring the muscles as they attach along 

the radials. However, the adductor and abductor profundus muscles of the cephalic lobes have 

tendons that extend to the distal ends of the lobes, similar to the flexor and extensor digitorum 

profundus muscles in humans that control the flexible distal digits (Gray, 1977). Rhinobatus 

bonasus, A. narinari, and the manta/mobula species examined have a novel dorsal muscle in the 

cephalic lobes, the dorsal oblique, which is markedly different in orientation from the other 
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musculature. Because the dorsal oblique is oriented at an angle to the radials, this muscle may 

provide the cephalic lobes with increased dexterity and a wider range of movement compared to 

the pectoral fins, including adduction and abduction of the fin rays.  

 Aetobatus narinari is known to use its cephalic lobe to dig through the substrate during 

prey excavation (Gudger, 1914). The dorsal oblique muscle may aid in this behavior, helping to 

fan out the fin rays and elevate the lobe, much like a shovel. The thickness of the dorsal oblique 

suggests that in A. narinari, it is quite powerful, whereas in R. bonasus and manta/mobula 

species it is much thinner. The divisions of the dorsal oblique found in R. bonasus may facilitate 

multibehavioral usage. Rhinoptera bonasus is known to repeatedly depress and elevate the 

cephalic lobes during prey excavation and feeding events to fluidize the sediment, whereas 

during swimming the lobes remain elevated (Sasko et al., 2006). The cephalic lobes are also 

depressed close to the sediment when searching for prey, presumably to detect the weak electric 

fields of the prey with the ampullae of Lorenzini (Sasko et al., 2006) and/or to detect tactile 

stimulation from prey (Maruska and Tricas, 1998; Maruska and Tricas, 2004). The difference in 

muscle coloration may indicate that this muscle is fatigue-resistant red myotomal muscle (Bone, 

1978) and reflect the need to repeatedly move the lobes during searching and feeding. In mobulid 

species, the dorsal oblique was very thin, although all specimens examined were neonates. 

During swimming, mobulids curl the cephalic lobes such that they face anteriorly (Notarbartolo-

di-Sciara and Hillyer, 1989). The dorsal oblique muscle may assist in this behavior.  

 The cephalic lobe levator muscle, found only in R. bonasus, most likely aids in elevating 

the antero-medial edges of the cephalic lobes. Rhinoptera bonasus possesses two separate 

cephalic lobes that meet at the anterior margin of the head. When swimming, the cephalic lobe 
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levator muscle may be important in retracting the medial portion of the cephalic lobes, making 

the head more hydrodynamic and therefore reducing drag during locomotion.  

 

Electrosensory Pores  

 Ampullae of Lorenzini are electrosensory receptors that can detect voltage gradients below 

1 nV cm-1 (Kajiura and Holland, 2002; Kajiura, 2003; Jordan et al., 2009), with studies showing 

responses to simulated prey from over 25 cm away (Jordan et al., 2009; McGowan and Kajiura, 

2009). Ampullae in batoids not only surround the mouth but are also found on both the dorsal 

and ventral surfaces of the head and on the pectoral fins and cephalic lobes (Chu and Wen, 

1979). Electroreception is used in prey detection, predator detection, conspecific communication 

and geonavigation in batoids (Tricas and Sisneros, 2004).  

 As batoids have a dorso-ventrally compressed body plan, the ventral surface of the body is 

extremely flat. Basal batoids typically locomote with bodies parallel to the substrate, such that all 

areas of the ventral surface are approximately equidistant from the substrate (personal 

observation). Concurrently, the electrosensory pore distribution of the anterior pectoral fins in the 

basal batoids, R. eglanteria, U. jamaicensis, and D. sabina, is very uniform. Rhinoptera bonasus 

and A. narinari lack electrosensory pores on the anterior pectoral fins, suggesting that the role of 

prey electrosensory detection is more isolated to the cephalic lobes rather than the pectoral fins.  

 The electrosensory pore distribution of the cephalic lobe in A. narinari is very uniform 

(Fig. 2.10). When A. narinari feeds on benthic prey and the cephalic lobes are depressed, the 

body typically is pitched downward such that the cephalic lobes and mouth are approximately 

parallel to and close to the substrate (Fig. 2.12A). The electrosensory pore distribution on the 
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cephalic lobes of R. bonasus is concentrated on the distal edges of the lobes. Because R. bonasus 

possesses two distinct lobes, the lobes are more laterally positioned compared to the single lobe 

of A. narinari. This makes it impossible to have both cephalic lobes entirely parallel to the 

substrate when depressed (as the ray would have to pitch forward and simultaneously to the left 

and right). Instead, the body of R. bonasus remains parallel to the substrate while depressing the 

cephalic lobes (Sasko et al., 2006; Fig. 2.12B). The distal edges of the cephalic lobes are closest 

to the substrate, while the proximal portion of the lobes is furthest away, as they articulate with 

the propterygium. Consequently, the ventral surface of the cephalic lobes is not evenly 

distributed across the substrate. Thus when searching for prey items, the area of the lobes closest 

to the substrate has the highest density of electrosensory pores, increasing the spatial resolution 

(Raschi, 1978) and distance of the field of detection from the body.  

 All mobulid/manta specimens examined lacked electrosensory pores on the anterior 

pectoral fins, as well as the cephalic lobes. Manta birostris is known to lack electrosensory pores 

on the cephalic lobes (Chu and Wen, 1979), with claims that all manta species have ampullary 

organs only in the hyoid region (Albert and Crampton, 2006). Because mantas and mobulids ram 

filter-feed on plankton, the need to utilize the cephalic lobes for prey detection via electrosensory 

systems is most likely reduced. Their prey is not buried underneath the substrate, but rather in the 

water column where, at times, high densities of plankton form distinct visible patches or layers 

that mobulas and mantas will repeatedly swim through (Notarbartolo-di-Sciara and Hillyer, 

1989). Though paddlefish, a filter-feeding fish with up to 75,000 electrosensory pores on its 

rostrum (Nachtrieb, 1910), utilize electroreception to capture plankton, the rivers they inhabit are 

turbid and have very low visibility (Wilkens et al., 1997). In contrast, mantas frequently inhabit 

near-shore waters and reefs (Michael, 1993) that are less turbid and may not need to rely on 
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electrosensory receptors to detect prey. The megamouth shark and basking shark, are also filter 

feeders and possess relatively few electrosensory receptors, a total of 225 and 301 pores, 

respectively, for the entire head, (Kempster and Collin, 2011a; Kempster and Collin, 2011b), 

which undoubtedly indicates very low pore densities for such massive fishes.  

 

CONCLUSIONS  

 The cephalic lobes are a novel structure, both anatomically and functionally, that aid 

batoids in prey detection, excavation and manipulation. Cephalic lobes are found exclusively in 

certain oscillatory swimmers, possibly aiding in the switch to oscillatory locomotion by taking 

on the role of feeding. While oscillatory locomotion involves more rigid skeletal elements and 

cross-bracing of radials, the demands of prey capture and feeding are quite opposite. The 

cephalic lobes maintain the flexibility and maneuverability needed to capture prey via increased 

joints, rounded radials and increased muscle complexity.  

 Although batoids that lack cephalic lobes, R. eglanteria, U. jamaicensis, and D. sabina, 

utilize their pectoral fins to locomote and capture prey, species with cephalic lobes, R. bonasus, 

A. narinari, and manta/mobula species have localized locomotion to the pectoral fins and prey 

capture to the cephalic lobes. The absence of electrosensory pores on the pectoral fins of all the 

oscillatory swimmers is further evidence of this separation of function. The cephalic lobes may 

have played a key role in the transition from benthic to pelagic habitats. Oscillatory locomotion 

allows for lift during locomotion and more efficient cruising, resulting in larger home ranges, 

more pelagic habitats and potential exploitation of expanded niches and resources. The trade-off 

of this locomotor mode is less maneuverability. The cephalic lobes offer a unique solution to this 
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problem such that maneuverability can be retained in the lobes while the pectoral fins can retain 

an efficient oscillatory locomotor mode.  
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TABLES AND FIGURES 
 
 
Table 2.1.  Materials examined.   
Species          # of    Type        Size range (DW) Museum specimen        Sex 
        specimens      catalog number           # of F/M/? 
Raja eglanteria 4 frozen  25-42cm     1/1/2 
Urobatis jamaicensis 7 preserved  15-21cm FLMNH77997  3/4/0 
               or frozen 
Dasyatis sabina 6 frozen  21-29cm     2/4/0 
Rhinoptera bonasus 7 frozen  50-78cm     5/2/0 
Aetobatus narinari 8 preserved  50-110cm US28348, USNM204769,  2/1/5 

            or frozen    US205415, USNM52823,  
                                                            US17510, FLMNH32679 

Manta birostris 1 preserved 113cm  US163933   0/1/0 
Mobula japonica 2 preserved 73-85cm  SIO 82-9   1/1/0 
Mobula munkiana 1 preserved 87cm   SIO 85-35   0/1/0 
Mobula thurstoni 1 preserved 57cm  SIO 85-36   0/1/0 
US and USNM = National Museum of Natural History, Smithsonian Institution, Washington 
D.C., SIO = Scripps Institute of Oceanography, La Jolla, California, FLMNH = Florida Museum 
of Natural History, Gainesville, Florida.    
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Table 2.2.  Average ILat/IDV of the radials and calcified portions of the radials in oscillatory 
swimmers, undulatory swimmers and the cephalic lobes.  * and ** indicate significant 
differences among the groups. 

ILat/IDV of cephalic lobes and locomotor modes 

Radial ILat/IDV    Calcified Radial ILat/IDV  

Oscillatory swimmers   5.4**    5.4* 

Undulatory swimmers   3.3    1.0* 

Cephalic lobes    3.3    2.9* 
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Figure 2.1.  The phylogeny of select batoids based on phylogenetic trees from Nishida (1990), 
Dunn et al. (2003), and Aschliman et al. (2012). Head shape is shown with cephalic lobes shaded 
in gray. The primary locomotor mode, undulatory/oscillatory, and type of calcification pattern of 
the radials, catenated/crustal, are also defined for each representative batoid. Modified from 
Sasko et al. (2006).  
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Figure 2.2. Stained cross sectional areas of select radials. The picture in the upper right has 
representative fin rays highlighted (fin rays #5, 10, and 15 on the pectoral fin and fin rays #5 and 
10 on the cephalic lobe) with black lines representing the 1 cm sections where the CSAs were 
sampled. (A–H) show transverse sections of select radials from the anterior pectoral fins and 
cephalic lobes. For all pictures, the top of the picture is the dorsal surface. (A–E) are pectoral fin 
cross sections from left to right of (A) fin ray #10, 1 cm and fin ray #25, 4 cm in R. eglanteria;  
(B) fin ray #10, 1 cm and fin ray #10, 2 cm of U. jamaicensis; (C) fin ray #5, 1 cm and fin ray 
#25, 4 cm of D. sabina; (D) fin ray #5, 1 cm and fin ray #5, 4 cm of A. narinari; (E) fin ray #5, 1 
cm and fin ray #15, 7 cm of R. bonasus. (F–H) are cephalic lobe cross sections from left to right 
of (F) fin ray #10, 2 cm and fin ray #10, 4 cm of A. narinari; (G) fin ray #10, 1 cm and fin ray 
#10, 4 cm of R. bonasus; (H) fin ray #10, 1 cm and fin ray #15, 6 cm of M. munkiana. The most 
well-stained and representative cross sections were chosen for each species. 
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Figure 2.3. Calculations for I.  The three large ovals represent three example radial CSAs. I is 
calculated for bending in the lateral plane (Ilat) and dorso-ventral plane (IDV). (A) calculates I for 
all of the cartilage ignoring calcification; (B) calculates I for only the crustal calcification areas; 
(C) calculates I for the catenated calcification areas. Note that catenated calcification equations 
change based on the number and location of calcified circles. In this example, n1 = 4,  n2 = 2, n3 = 
6, n4 = 0. NA = neutral axis. 
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Figure 2.4. Radiographs showing the orientation of the radials of the (A) eagle ray, A. narinari 
pectoral fin and cephalic lobe (upper left); (B) Atlantic stingray, D. sabina pectoral fin. Scale  
bars = 1 cm. 
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Figure 2.5.  Average number of joints/cm2 for the anterior pectoral fins and cephalic lobes.  The x 
axis represents Apec = A. narinari anterior pectoral fin, Rbpec = R. bonasus anterior pectoral fin, 
Alobe = A. narinari cephalic lobe, Repec = R. eglanteria anterior pectoral fin, Dpec = D. sabina 
anterior pectoral fin, Upec = U. jamaicensis anterior pectoral fin, and Rlobe = R. bonasus cephalic 
lobe. Pectoral fins with oscillatory locomotion = dark grey, pectoral fins with undulatory 
locomotion = white, cephalic lobes = light grey. Error bars are standard error. Groups within the 
lines are not significantly different.  
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Figure 2.6. Average ILat/IDV.  (A) Average ILat/IDV for the cross sections of the entire radials and 
(B) average ILat/IDV for only the calcified regions of the radials of: Rbpec = R. bonasus anterior 
pectoral fin, Apec = A. narinari anterior pectoral fin, Rblobe = R. bonasus cephalic lobe, Mlobe = M. 
munkiana cephalic lobe, Alobe = A. narinari cephalic lobe, Dpec = D. sabina anterior pectoral fin, 
Repec = R. eglanteria anterior pectoral fin, Upec = U. jamaicensis anterior pectoral fin. Pectoral 
fins with oscillatory locomotion = dark grey, pectoral fins with undulatory locomotion = white, 
cephalic lobes = light grey. Drawings below each bar represent the CSA used to determine the 
ILat/IDV. Error bars are standard error. Groups within the lines are not significantly different.  
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Figure 2.7.  Dorsal (left) and ventral (right) views of the pectoral fin musculature in D. sabina.  
The different layers are shown with the lateral and posterior panel as the most superficial layer 
(A) and a cross sectional view of the pectoral fin of D. sabina with dorsal on the top and ventral 
on the bottom, showing the different muscle layers as well as muscle fiber direction (B).  
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Figure 2.8.  Dorsal (A) and ventral (B) views of the cephalic lobe musculature in A. narinari.  
The deepest layer starts medially. Cross sectional view of the cephalic lobe in A. narinari, 
showing the different muscle layers as well as muscle fiber direction (C). 
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Figure 2.9.  Antero-lateral view of the right side of R. bonasus with the right cephalic lobe 
depressed, showing the cephalic lobe levator muscle outlined. The white scale bar is 1 cm. 
 

 

 

 



www.manaraa.com

  48 

 

Figure 2.10.  Electrosensory pore distribution on the anterior ventral pectoral fins and the ventral 
cephalic lobes for the six species. Each pore is represented by a black dot.  
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Figure 2.11.  The average number of pores for the anterior pectoral fin or cephalic lobes of 
different species, including standard error (SE). Mpec = Mobula and Manta species pectoral fin, 
Mlobe = Mobula and Manta species cephalic lobe, Apec = A. narinari anterior pectoral fin, Rbpec = 
R. bonasus anterior pectoral fin, Repec = R. eglanteria anterior pectoral fin, Dpec = D. sabina 
anterior pectoral fin, Alobe = A. narinari cephalic lobe, Rblobe = R. bonasus cephalic lobe, Upec = 
U. jamaicensis anterior pectoral fin. Pectoral fins with undulatory locomotion = white, cephalic 
lobes = light grey. Groups within the lines are not significantly different. 
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Figure 2.12.  Body orientation and cephalic lobe position during feeding in (A) A. narinari and 
(B) R. bonasus. 
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CHAPTER THREE:  PREY CAPTURE KINEMATICS IN BATOIDS ON DIFFERENT PREY 

TYPES: THE ROLE OF THE CEPHALIC LOBES 

 

ABSTRACT 

Cephalic lobes are novel structures found in some myliobatid stingrays.  While 

undulatory batoids utilize the pectoral fins for prey capture and locomotion, lobed species 

partition locomotion to the pectoral fins, utilizing exclusively the lobes for prey capture.  We 

investigated the use of the anterior pectoral fins and cephalic lobes in prey capture in five batoid 

species.  The purpose of this study was to investigate the: 1) prey capture kinematics and use of 

the cephalic lobes in lobed and lobeless batoids; 2) role of the cephalic lobes in modulating 

capture behavior based on prey type.  It was hypothesized that lobed species would display 

unique capture behaviors resulting in faster and more successful capture of prey, and display 

greater modulation in capture behavior.  Findings showed that lobed species used only the head 

region for capture, were faster at pouncing and tenting, but slower at mouth opening.  The 

cephalic lobes were more movable than the anterior pectoral fins of lobeless species. Modulation 

occurred in all species.  Elusive prey increased tent duration for the lobeless species, increased 

mouth opening duration in the lobed Aetobatus narinari, and were farther away from the mouth 

than non-elusive prey during biting for all species.  All species had very few prey escapes.  

Overall, species with cephalic lobes captured prey faster but did not display increased 

modulatory ability or feeding success.  The cephalic lobes help localize prey capture to the head 
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region, speeding up the prey capture event and maintaining an efficient capture rate despite the 

lack of flexible pectoral fins. 

 

INTRODUCTION 

Novel feeding structures can lead to changes in prey capture and can open up new 

ecological niches by resolving previously constrained conditions.  For example, the evolution of 

ballistic tongue projection in chameleons and salamanders allows for not only prey capture at 

greater distances, but also an expanded thermal niche via the ability to capture prey at lower 

temperatures compared to other lizards (Anderson and Deban, 2010; Deban and Richardson, 

2011). Modifications to the upper and lower jaw in loricarioid catfishes, including novel muscle 

insertions, subdivisions and attachments, results in increased mobility of the premaxillae and 

independence of functional components of the feeding mechanism, allowing this clade to scrape 

algae as well as attach to the substrate with an oral sucker (Schaefer and Lauder, ‘86).  

Furthermore, novel structures are often associated with increased functional complexity, leading 

to increased modulation in feeding performance. Multiple subdivisions of the adductor 

mandibulae jaw muscle complex in tetraodontiform fishes results in novel motor patterns when 

feeding on different prey types (Turingan and Wainwright, ‘93).   

A group of derived myliobatid rays possess novel structures called cephalic lobes, which 

may facilitate modifications in prey capture and an expanded ecological niche.  These novel 

appendages are derived from the anterior pectoral fins (Bigelow and Schroeder, ‘53; Nishida, 

‘90; Miyake et al., ‘92).  The lobes have an additional dorsal muscle layer, with muscles running 

oblique to the skeletal components, along with more circular supportive cartilaginous radials 



www.manaraa.com

  53 

compared to those of the pectoral fins (Mulvany and Motta, 2013).  While lobes in some species 

are stiff and immovable, in many other species they are used to help excavate, grasp/cup prey, 

maneuver prey into the mouth (Sasko et al., 2006), and can even furl and unfurl, as seen in 

Manta birostris (Notarbartolo-di-Sciara and Hillyer, ‘89). Electrosensory pores are present on 

the ventral surface of the cephalic lobes and are thought to aid in prey detection (Mulvany and 

Motta, 2013). While cephalic lobes are considered primarily to aid in feeding (Moss, ‘77; Sasko 

et al., 2006), shifts in habitat and locomotor patterns coincide with the appearance of the cephalic 

lobes (Fig. 3.1).  

Basal batoids that lack cephalic lobes are benthic and exhibit undulatory locomotion 

(waves traveling posteriorly along the pectoral fins) while derived batoids with cephalic lobes 

are more pelagic and exhibit predominantly oscillatory locomotion (repeated depression and 

elevation of the pectoral fins in a flapping motion) (Rosenberger, 2001; Schaefer and Summers, 

2005; Sasko et al., 2006). Undulatory species have high maneuverability close to the substrate, 

but lack the ability to travel extended distances (Rosenberger, 2001). Oscillatory species possess 

stiffer pectoral fins (Schaefer and Summers, 2005; Mulvany and Motta, 2013), which aid in 

travelling long distances, though maneuverability is decreased, particularly close to the substrate.  

Despite these differences, undulatory and oscillatory batoids often feed on similar prey, 

facilitating comparisons of prey capture and handling. 

The majority of batoids feed largely upon benthic or epi-benthic organisms, such as 

polychaetes and bivalves, as well as more elusive prey (e.g. shrimp or fish) (Smith and Merriner, 

‘85; Michael, ‘93; Compagno, ‘97; Ebert and Cowley, 2003; Ebert and Bizzarro, 2007; Collins et 

al., 2007; Ajemian and Powers, 2012; Jacobsen and Bennett, 2013).  Batoids typically pounce on 

prey, pinning them against the substrate, and use their pectoral fins and body to form a tent over 
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the prey to prevent escape (Lowe et al., ‘94; Wilga and Motta, ‘98; Wilga et al., 2012), followed 

by suction feeding after the prey is positioned near the mouth.  Often times, the pectoral fins aid 

in prey excavation, manipulation of prey toward the mouth and winnowing to separate the prey 

from the substrate (Lowe et al., ‘94; Maruska and Tricas, ‘98; Dean and Motta, 2004; Wilga et 

al., 2012).  In undulatory batoids, maneuverability during feeding and locomotion are achieved 

through the flexible pectoral fins.  In oscillatory species, the pectoral fins are much less flexible, 

thus the highly maneuverable cephalic lobes are used in feeding while the pectoral fins are 

primarily used for locomotion (Smith and Merriner, ‘85; Sasko et al., 2006; Mulvany and Motta, 

2013).  The use of the novel cephalic lobes may result in unique feeding behaviors, resulting in 

increased versatility or modulation of prey capture in these derived batoids. 

The ability to modulate prey capture behavior can affect feeding success and also expand 

the diversity of prey.  Modulation can be defined as the active modification of movements by the 

nervous system in response to a changing variable (Liem, ‘78; Deban et al., 2001).  The ability of 

a predator, in this case batoids, to change their feeding behavior in function based on the type or 

position of the prey constitutes modulation (Van Wassenbergh et al., 2006). Numerous bony 

fishes are capable of modulating feeding behavior in response to differing stimuli: prey types, 

prey presentations, elusivity, or changes in environmental conditions (Liem, ‘78; Turingan and 

Wainwright, ‘93; Frost and Sanford, ‘99; Liem and Summers, 2000; Wainwright and Friel, 2000; 

Alfaro et al., 2001; Ferry-Graham et al., 2001; Van Wassenbergh and De Rechter, 2011; 

Gardiner and Motta, 2012).  Elasmobranchs are less well studied than bony fish in this regard.  

Some carcharhinid sharks have shown the ability to modulate feeding behavior based on prey 

type, size or presentation (Moss ‘72, Tricas and McCosker ‘84, Frazzetta and Prange ‘87; Motta 

et al., ‘97), although most specialized suction-feeding sharks displayed less modulatory ability 
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(Ferry-Graham, ‘97; Ferry-Graham, ‘98; Edmonds et al., 2002; Motta et al., 2002: Matott and 

Motta, 2005).  Indeed, some of the few feeding kinematic studies on batoids illustrate 

modulation in feeding behavior.  For example, modulation in recruitment of muscles that depress 

the mandible and hyoid during feeding was found in the guitarfish, Rhinobatos lentiginosus 

(Wilga and Motta, ‘98).  The little skate, Leucoraja erinacea, increases the degree of asynchrony 

in muscle activation with prey that requires manipulation and processing (Gerry et al., 2008), 

while the lesser electric ray, Narcine brasiliensis, can modify the degree and direction of jaw 

protrusion during predatory striking and processing (Dean and Motta, 2004).  However, 

modulation in prey capture behavior due to elusive and non-elusive prey types has yet to be 

investigated in batoids, as well as the role of the pectoral fins or cephalic lobes. 

 The purpose of this study is to elucidate the role of the cephalic lobes in prey capture 

behavior and specifically to investigate: 1) the prey capture kinematics of a group of 

representative batoids that possess and lack cephalic lobes, and 2) the role of the novel cephalic 

lobes in diversifying and modulating prey capture behavior based on prey type.  I hypothesized 

that the highly maneuverable cephalic lobes would decrease the time required to manipulate prey 

toward the mouth, that batoids with cephalic lobes would be more successful in preventing prey 

escape, and that lobed species would demonstrate greater modulation in their capture behavior. 

 

METHODS 

The five species under investigation were the clearnose skate, Raja eglanteria (Bosc, 

1800); yellow stingray, Urobatis jamaicensis (Cuvier, 1816); Atlantic stingray Dasyatis sabina 

(Lesueur, 1824); spotted eagle ray Aetobatus narinari (Euphrasen, 1790); and cownose ray 
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Rhinoptera bonasus (Mitchill, 1815) (Fig. 3.1, Table 3.1).  These species are found in the 

Atlantic Ocean (Bigelow and Schroeder ‘53; Smith, ‘97) and their diets all include mollusks, 

polychaetes, and crustaceans (Bigelow and Schroeder ‘53; Stehmann and McEachran, ‘78; 

Michael, ‘93; Compagno, ‘97; Summers, 2000; Jardas et al., 2004; Sasko et al. 2006; Collins et 

al., 2007).   

Animals were collected in Florida from Tampa Bay, Lake Monroe of the St. John’s 

River, the waters off the Florida Keys or the waters near Sarasota Bay.  Batoids were either 

housed in a ~18,000 liter display tank at the Florida Aquarium, in a ~200 liter display tank or a 

~151,500 liter holding tank at Mote Marine Laboratory, or in a ~3,700 liter holding tank at the 

University of South Florida (Tampa, FL).  Animals were fed three times a week to satiation with 

cut Atlantic thread herring, Opisthonema oglinum, veined squid, Loligo forbesi, live hard clams, 

Mercenaria mercenaria, or pink shrimp, Penaeus sp.  The prey used in experiments was 

determined by the regulations of the facilities that housed the batoids, as well as the willingness 

of the batoids to feed on certain prey in captivity.  Salinity was maintained at 31-34 ‰ and 

temperature at 21-24°C. Experimental procedures for all animals took place during regular 

feeding times and all prey items were slightly less than the width of the ray’s mouth width.  For 

each species, five individuals were imaged ten times for each feeding treatment.  A Photron 

Fastcam 512PCI camera was used to image all species at 125 Hz.  Only the first five feeding per 

imaging day were used to avoid effects of satiation (Sass and Motta, 2002). 

During imaging, R. eglanteria, U. jamaicensis or D. sabina were individually placed in a 

60cm x 90cm tank. A Plexiglas box with 45° mirror was placed under the tank to capture both 

lateral and ventral views simultaneously.  Lateral views angled approximately 10° or more to the 
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imaging plane were not analyzed.  Live, loose ghost shrimp, Palaeomonetes sp. were used for 

elusive prey and pieces of L. forbesi were used for non-elusive prey.   

Aetobatus narinari were imaged in ~151,500 liter tank with a viewing window on one 

side.  Lateral views were imaged with a Photron Fastcam 512PCI camera, while a Sony JVC 

DVL 9800u high-speed camcorder was used to obtain dorsal views of the eagle rays at 125 Hz, 

although the videos were not synchronized. Mercenaria mercenaria (intact) was used for non-

elusive prey.  It was not possible to train the A. narinari to feed on live shrimp, therefore M. 

mercenaria were tied to a cotton string and haphazardly jerked about 5-15cm across the substrate 

every 1-3 seconds to mimic elusive prey.  

Rhinoptera bonasus was imaged in a ~18,000 liter holding tank.  A Plexiglas box with 

45° mirror was placed in the holding tank to capture both lateral and ventral views 

simultaneously.  Non-elusive prey consisted of dead Penaeus sp., O. oglinum and L. forbesi. 

Live Penaeus sp. was used as elusive prey.  The shrimp were tethered at their thorax to the center 

of the mirror box using thin strands (~1 mm) of seaweed approximately 30 cm long (species 

unknown) so that the shrimp were free to move about the length of the mirror box, but not 

outside of the imaging area.  

 

Kinematic capture variables 

Thirteen kinematic variables were calculated for each of prey capture trials using 

MaxTRAQ v.1.87 software: (1) pounce duration (beginning of the prey capture event as defined 

by the onset of cephalic lobe depression to the time of maximum cephalic lobe depression in 

species that possess cephalic lobes; or the onset of rostrum elevation to the time of rostrum 
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contact with the substrate in lobeless species); (2) tenting duration (time from the rostrum/lobes 

touching the substrate to the time the mouth begins to open for a successful bite).  During 

tenting, the batoid is over the prey with its cephalic lobes and/or pectoral fins depressed against 

the substrate around the prey, preventing escape.  The tenting duration measures the amount of 

time spent manipulating the prey item before successfully consuming the prey (keeping prey 

trapped, moving prey toward mouth, and even unsuccessful biting attempts prior to 

consumption); (3) mouth opening duration (time from mouth opening of a successful bite to the 

last piece of prey entering mouth); (4) mouth closing duration (time of last piece of prey entering 

mouth to mouth closing); (5) bite duration (from the onset of mouth opening to the time the 

mouth closes, durations 3 and 4 combined); and (6) time of the prey capture event (durations 1-5 

combined).  Variables to quantify movement of the cephalic lobes or anterior pectoral fins during 

a prey capture event included: (7) vertical movement (angle of movement of the tips of the 

cephalic lobes or rostrum in the vertical plane); (8) horizontal movement (angle of movement of 

the tips of the cephalic lobes or rostrum in the horizontal plane).  Angles were taken by 

measuring the difference between the tips of the lobes or rostrum in resting position and when 

maximally depressed or elevated, using the position where the radials pivot on the propterygium 

as the vertex (Fig. 3.2).  Other variables to analyze capture success included: (9) 

presence/absence of tenting behavior; (10) number of times prey escaped during pouncing; (11) 

number of times prey escaped during tenting; (12) number of times prey escaped after being 

grasped by the mouth; and (13) total number of bite attempts (mouth openings) by the batoid.   
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Mapping distance of prey  

Each attempt at consuming a prey item (a mouth opening), successful or unsuccessful, 

was recorded and used to create a distance map from the prey to the mouth of each batoid using 

SigmaScan Pro v4.01.003 (SPSS Inc., Chicago, IL).  Still pictures of ventral views were captured 

from the image sequences at the onset of mouth opening, and the distance from the center of the 

mouth to the center of the prey was measured for each bite.  A line was drawn down the 

midsagittal plane of the animal to divide the left and right side of the batoid.  A perpendicular 

line was drawn through the mouth to divide the bites anterior and posterior to the mouth.  For 

each bite, prey type, bite success, the distance from the mouth and position of the bite (left/right 

side and posterior/anterior end) was recorded.  The disc width of the batoid was also measured 

for each image.  Because ventral views were not obtained for A. narinari, prey distance data 

were not obtained. 

 

Statistics 

Five individuals per species were imaged.  For each individual, 10 prey capture events 

with elusive prey and 10 prey capture events with non-elusive prey were imaged.  To avoid 

pseudoreplication, the ten events in each category were averaged to provide an estimate of a prey 

capture event for each individual.  A multiple regression was used to regress kinematic variables 

against disc width to determine if any variables correlated with size, as some studies have shown 

increases in duration variables with increased size (Richard and Wainwright, ‘95; Hernandez, 

2000; Robinson and Motta, 2002; Deban and O’Reilly, 2005).  Only mouth closing duration was 

found to correlate with size so this variable was regressed against disc width and the standard 
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residuals were used for analysis.  Since the same individuals were fed both elusive and non-

elusive prey items, kinematic data were analyzed using a 2-way repeated measures ANOVA, 

investigating differences among species, between prey types and interactions.  Data that failed 

the Shapiro-Wilk test for normality and the Levene median test for equality of variance test were 

log10 transformed and retested.  To correct for multiple comparisons, a Benjamini-Hochberg 

false discovery rate control was used to ensure a p-value of 0.05 (Benjamini and Hochberg, ’95).  

A Tukey’s post hoc test was used determine which specific variables significantly differed.   

A regression of prey distance measurements (from prey to the center of the mouth at the 

start of mouth opening) against disc width was performed to remove the effect of size among all 

species and the standard residuals were entered into a 3-way ANOVA to determine any 

differences among prey type, species and biting success.  Analyses were conducted with 

SigmaStat v. 3.1 (SYSTAT Software, San Jose, CA). Animal use for the study was approved by 

the University of South Florida Institutional Animal Care and Use Committee (IACUC # 

W3565, W2959) and Mote Marine Laboratory Institutional Animal Care and Use Committee 

(IACUC # 08-04-PM2,10-03-PM1). 

 

RESULTS 

Prey capture events, both elusive and non-elusive, were always initiated while the batoid 

was locomoting above the prey for R. bonasus and A. narinari, while D. sabina, U. jamaicensis 

and R. eglanteria were often sedentary on the substrate at the onset of prey capture.  Species with 

cephalic lobes tended to use just the head to tent prey, depressing and fanning out the cephalic 

lobes during the entire prey capture event. Species lacking lobes used the entire body to capture 
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prey, initially elevating the rostrum or entire body to swim over prey before depressing the 

pectoral fins around the prey using the entire body (Fig. 3.3).  Prey were consumed using 

suction, biting or a combination of both, often with the batoid maneuvering its mouth closer to 

the prey.  The body of A. narinari was noticeably pitched forward during all captures, with the 

head level to the substrate.  Rhinoptera bonasus was noted to either capture prey with the body 

pitched forward or with the body level to the substrate.  All other batoids maintained a level body 

position relative to the substrate during prey capture.   

 

Prey capture kinematics 

In general, kinematic results showed that species with cephalic lobes had shorter pounce 

and tent durations, longer mouth opening and closing durations, and overall faster capture events.  

Pounce duration was not affected by prey type (p >0.05) but showed differences among species 

after a false discovery rate correction (p = 0.001, adjusted critical value = 0.004). Raja eglanteria 

had a significantly longer pounce duration than A. narinari and R. bonasus (p < 0.012) (Fig. 3.4; 

Table 3.2).  Tenting duration showed species differences (p = .001, adjusted critical value = 

0.008), with R. eglanteria and U. jamaicensis tenting significantly longer than D. sabina, R. 

bonasus and A. narinari (p < 0.031).  Prey type affected tenting duration (p = 0.005, adjusted 

critical value = 0.013), with R. eglanteria and U. jamaicensis spending more time tenting elusive 

prey (p = 0.005) compared to non-elusive prey.  Mouth opening duration showed species 

differences (p = 0.001, adjusted critical value = 0.013), with greater durations in R. bonasus, A. 

narinari and U. jamaicensis compared to other two species (p = 0.039 and 0.046).  Between prey 

types, A. narinari mouth opening was significantly slower with elusive prey (p = 0.013).  After 
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removing the effect of size from mouth closing duration, no significant differences among 

species or between prey type were found (p > 0.05).  When looking at bite duration, prey type 

had no effect (p > 0.05), but there was a difference among species (p = 0.004, adjusted critical 

value = 0.029); Rhinoptera bonasus had a significantly longer bite than R. eglanteria and U. 

jamaicensis (p < 0.05).  The overall prey capture event was significantly different among species 

(p = 0.001, adjusted critical value = 0.017), shorter for A. narinari and R. bonasus compared to 

R. eglanteria and U. jamaicensis (p < 0.026).  Elusive prey increased the overall capture event 

duration for R. eglanteria and U. jamaicensis compared to non-elusive prey (p < 0.05).  The 

mixed interactions (Table 3.2C) showed no significant differences among species and prey type 

combined (p < 0.05).  

 Variation in the range of motion of the rostrum or cephalic lobes was found (Fig. 3.5). 

Movement of the cephalic lobes and rostrum in the vertical plane did not vary by prey type (p = 

0.357) but was significantly different among species (p = 0.001, adjusted critical value = 0.025).  

Rhinoptera bonasus cephalic lobes had a significantly higher angle of vertical movement 

compared to all other species (p < 0.05), with an average angle between 80-90˚.  Aetobatus 

narinari, D. sabina and U. jamaicensis grouped together, displaying angles around 30-40˚ while 

R. eglanteria did not display any vertical rostral movement.  For movement in the horizontal 

plane, R. bonasus showed a significant difference in prey type (p < 0.05), with more motion 

when capturing non-elusive prey. Rhinoptera bonasus had the largest range of horizontal motion 

of the cephalic lobes (p < 0.05), while A. narinari showed significantly less movement (p < 

0.05), and the remaining species did not display any horizontal movements.    

Tenting behavior was present in all species for every prey capture event. The total 

number of bites taken for each capture event showed no significant difference among species or 
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between prey type (Fig 3.6A), with all species averaging roughly 2 to 3 bites per capture event. 

No significant difference in number of pounce, tent and mouth escapes for all species were found 

(p > 0.05), with all escape averages below 1 escape per capture event for elusive prey (Fig. 3.6B-

D).  

 

Mapping distance of prey 

Analysis of prey location during mouth opening (successful and unsuccessful bites) 

revealed significant species differences, with R. eglanteria biting when prey items were closer to 

the mouth (p 0< .005) compared to other species (Fig 3.7; Table 3.3).  For all species, elusive 

prey were farther away from the mouth during mouth opening (p < 0.001) and successful bites 

were closer to the mouth compared to unsuccessful bites (p < 0.001).  No left/right side 

differences were found (p > 0.05), whereas anterior/posterior differences were found among 

species (p < 0.001).  Urobatis jamaicensis bit more frequently when prey items were posterior to 

the mouth (p < 0.001) while D. sabina and R. eglanteria frequently bit when prey items were 

anterior to the mouth (p ≤ 0.008) and R. bonasus did not show any anterior/posterior preference 

(p ≤ 0.003).  For elusive prey (p = 0.005), non-elusive prey (p < 0.001), successful bites (p ≤ 

0.043) and unsuccessful bites (p ≤ 0.006), U. jamaicensis consistently showed a preference for 

biting when prey were posterior to the mouth.  Raja eglanteria and D. sabina often bit when 

elusive prey (p = 0.005) and non-elusive prey (p < 0.001) were anterior to the mouth for 

successful (p ≤ 0.043) and unsuccessful (p ≤ 0.048) bite attempts.  Rhinoptera bonasus tended to 

bite when elusive prey were posterior to the mouth (p ≤ 0.033), and when non-elusive prey were 
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anterior of the mouth (p < 0.001).  Successful bites for R. bonasus occurred more anterior to the 

mouth (p = 0.043) while there was no preference for unsuccessful bites (p ≤ 0.048).    

 

DISCUSSION 

We have found marked differences in prey capture behavior among these batoid species 

and some differences in capture behavior based on prey type.  Overall, species with cephalic 

lobes localize tenting to the head region, utilize the cephalic lobes to prevent prey escapes, and 

decrease the duration of a prey capture event.  Species that lack cephalic lobes utilize the entire 

body to subdue prey and overall take a longer time to complete a prey capture event.  However, 

no difference in success of prey capture was observed between lobed and lobeless species in this 

experimental setting.  Some modulation driven by prey type was seen in all batoids, but species 

with cephalic lobes did not demonstrate overall greater modulation of prey capture kinematics as 

hypothesized.       

 

Cephalic lobes and prey capture kinematics 

 It was hypothesized that the cephalic lobes would decrease the time needed to manipulate 

prey toward the mouth.  Overall, this was true, as lobed species tended to pounce and tent prey 

faster (Fig. 3.4).  The faster pouncing was possibly a result of a more mobile lifestyle of these 

batoids, while lobeless species tended to pounce from a stationary position.  R. bonasus and A. 

narinari initiated pouncing while cruising, which may increase the velocity of pouncing.  As 

lobed species are more pelagic (Lovejoy, ‘96; Rosenberger, 2001), pouncing was initiated from 
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above the prey.  The more benthic species, R. eglanteria, U. jamaicensis and D. sabina, swam up 

and over prey before descending to form a tent over the prey, possibly increasing pounce 

duration.    

Tenting durations, which include prey handling, were faster for lobed species (Fig. 3.4).  

Because lobed species are oscillatory swimmers (Rosenberger, 2001), their pectoral fins are 

stiffer and less maneuverable (Schaefer and Summers, 2005; Mulvany and Motta, 2013), making 

them less efficient in tenting with their pectoral fins compared to undulatory swimmers with 

flexible pectoral fins.  These oscillatory swimmers avoid this dilemma by localizing prey capture 

to the head region and utilizing the movable cephalic lobes to tent prey, perhaps decreasing prey 

handling time by decreasing the tenting area.  Species with cephalic lobes might also have an 

advantage at pinpointing prey once it is tented.  Electrosensory receptors are found on all the 

examined species (Chu and Wen, ‘79; Bedore et al., 2013; Mulvany and Motta, 2013), but with a 

dorso-ventrally depressed body, batoids are limited to sensitivity in the horizontal plane (Tricas 

and Sisnero, 2004), as the receptors are all in one plane.  Depressing the cephalic lobes, which 

are covered in electrosensory pores (Chu and Wen, ‘79; Mulvany and Motta, 2013), may help to 

create a more three-dimensional sensory field by positioning electrosensory canals in a vertical 

plane, while the other canals remain in a horizontal plane on the body.  The high density of pores 

on the cephalic lobes may also help pinpoint prey by increasing resolution (Raschi, ’86; Bedore 

et al., 2013).     

Despite size differences among species, the only kinematic variable that correlated with 

size was mouth closing duration.  After removing the effect of size, no differences in mouth 

closing were seen among species or between prey types.  Mouth opening and bite duration, 

however, were slower in lobed species compared to lobeless species (Fig. 3.4).  Raja eglanteria, 
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U. jamaicensis and D. sabina had bite duration values comparable to other batoid feeding 

kinematic studies (Wilga and Motta, ‘98; Dean and Motta, 2004) while species with cephalic 

lobes, R. bonasus and A. narinari, took almost twice as long to open and close their mouth.  It is 

possible that A. narinari, in particular, relies more on biting and less on suction during feeding, 

as suction feeding requires rapid jaw expansion to generate negative pressure (Lauder, ‘85, 

Holzman et al., 2012).  In addition, R. bonasus and A. narinari are known to feed on hard prey, 

such as bivalves and crustaceans, as well as polychaetes, fish and squid (Smith and Merriner, 

‘85; Jardas et al., 2004; Collins et al., 2007), which may lessen the need for rapid jaw expansion 

(Alfaro et al., 2001).  The jaws of durophagous species may also be more biomechanically force 

efficient than speed efficient (Turingan et al., ‘95; Huber et al., 2005; Westneat, 2006). 

Movement of the cephalic lobes and/or anterior pectoral fins in the vertical plane was 

prevalent for all species except R. eglanteria (Fig. 3.5A).  Raja eglanteria has panes of stiff 

rostral tissue on either side of the rostrum (Smith, ‘97; McComb and Kajiura 2008), which, to 

our knowledge, has not been investigated in detail. Only a small amount of the anterior pectoral 

fins extend anterior to the mouth, lateral to these panes, perhaps accounting for the inflexibility 

of the rostrum in both the horizontal and vertical plane. Pouncing and tenting durations were the 

longest for R. eglanteria (Fig. 3.4), presumably because of this inflexibility of the rostrum.  

Instead of moving the rostrum, R. eglanteria maneuvered its whole body to trap prey.  The 

anterior pectoral fins or cephalic lobes in other batoid species extended well beyond the mouth 

(Schaefer and Summers, 2005; Mulvany and Motta, 2013), allowing movement in the vertical 

plane. Lobed species depressed the lobes to search and trap prey against the substrate (Fig. 3.3D-

E), elevating the lobes after consuming prey. Lobeless species utilized the anterior pectoral fins 
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to elevate the rostrum up over the prey and depress the rostrum to trap the prey against the 

substrate (Fig. 3.3A-C).  

Lobeless species exhibited no anterior pectoral fin movement in the horizontal plane, or 

fanning out.  As the pectoral fins extend in all directions from the body, horizontal movement 

may not be possible.  The pectoral fins can depress against the substrate, sufficient to fully 

surround prey under the body without any horizontal movement.  Since the cephalic lobes are 

distinct from the pectoral fins in R. bonasus and A. narinari, there is a physical gap between the 

fins and the lobes where prey could escape.  As the cephalic lobes are depressed, they undergo 

horizontal movement, helping to occlude the lateral portion of the head as well as the anterior 

portion.  The radials (skeletal elements of the lobes and fins) of the R. bonasus cephalic lobes are 

rounded at the proximal ends and attach to the propterygium via round sockets (Mulvany and 

Motta, 2013) conferring flexibility to the cephalic lobes.   

The distance of the prey to the mouth during biting (mouth opening for successful and 

unsuccessful bites combined) was significantly closer for R. eglanteria compared to other 

species examined (no data for A. narinari) (Fig. 3.7, Table 3.3).  While the tenting duration of R. 

eglanteria was the greatest of the species examined, there was no difference in the number of 

bites taken to ingest prey, indicating that R. eglanteria bit relatively less often than other batoids, 

seemingly waiting until prey were very close to the mouth before striking.  Mouth opening has 

been linked to electroreception in sharks (Gardiner et al., in prep).  Compared to other species in 

this study, R. eglanteria has relatively fewer electrosensory pores on the anterior pectoral fins 

(Chu and Wen, ‘79; Mulvany and Motta, 2013) and mouth opening cues may depend primarily 

on the ampullae surrounding the mouth, where the pores are highly concentrated (Chu and Wen, 

‘79; Montgomery and Bodznick, ‘99).  The other batoid species might detect prey and engage 
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biting behavior when prey is farther from the mouth because of numerous electrosensory pores 

on the pectoral fins and cephalic lobes.  

Elusive prey were farther away from the mouth for all species when biting occurred (Fig. 

3.7; Table 3.3).  Maneuvering elusive prey toward the mouth is complicated, as batoids move 

prey toward the mouth by manipulating water flow under the body (Wilga et al., 2012) yet also 

firmly pin prey to the substrate to prevent escape movements.  The combination of these 

opposing actions, along with movements from the prey trying to escape likely made 

maneuvering elusive prey difficult, likely resulted in elusive prey being greater distances from 

the mouth during biting.    

Successful bites occurred when prey were closer to the mouth for all species examined 

(Fig. 3.7; Table 3.3).  The examined species utilized primarily suction feeding to move prey into 

the mouth, which is most efficient at short distances, as water flow velocity into the mouth 

decreases exponentially with distance (Svanback et al., 2002).  Some individuals of R. 

eglanteria, U. jamaicensis, D. sabina and R. bonasus were noted to utilize a strategy of repeated 

biting, and presumably sucking, while attempting to maneuver prey toward the mouth, regardless 

of proximity of prey to mouth.  Suction generated from mouth opening would help move water, 

and consequently prey, toward the mouth.  

Urobatis jamaicensis displayed a preference of biting when both prey types were 

posterior to the mouth, while D. sabina and R. eglanteria had the opposite preference (Fig. 3.7; 

Table 3.3).  While there is no clear explanation for these results, sensory differences may be 

driving anterior/posterior preferences.  In addition to electrosensory pores, batoids possess 

ventral nonpored canals and vesicles of Savi, mechanotactile receptors used to detect and capture 
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prey (Chu and Wen, ‘79; Maruska and Tricas, ‘98).  Studies have shown that the canals run 

anterior and posterior of the mouth in these three genera (Chu and Wen, ‘79; Montgomery and 

Bodznick, 2004; Maruska and Tricas, 2004; Jordan, 2008), with the canals seemingly more 

concentrated near the rostrum, though this has not been specifically investigated.  Variation in 

the distributions and densities of these canals and electrosensory pores could account for the 

different preferences.  There is also a possibility that other factors such as fluid dynamics, body 

shape or the way prey is pinned to the substrate were causing this anterior/posterior preference.   

 

Modulation of prey capture kinematics 

Modulation, noted by a significant change in the kinematic variables when switching 

between prey type, was seen in all batoids during certain stages of prey capture (Table 3.4), not 

supporting our hypothesis that lobed species would modulate prey capture behavior more than 

lobeless species.  All batoids initiated mouth opening when elusive prey were farther from the 

mouth compared to non-elusive prey.  With the exception of D. sabina, all batoids displayed 

modulation during one other stage of prey capture.  For instance, R. eglanteria and U. 

jamaicensis increased tenting duration, or prey handling duration, for elusive prey (Fig. 3.4).  

Increased handling time of elusive prey was also found in herring, Clupea harengus, sprat, 

Sprattus sprattus, (Brachvogel et al., 2013) and the whitespotted bambooshark, Chiloscyllium 

plagiosum, (Lowry and Motta, 2007). 

The only batoid to display modulation of mouth opening duration was A. narinari, with 

greater durations for elusive prey compared to non-elusive prey (Fig. 3.4), possibly in response 

to prey moving away from them.  Similarly, prolonged mouth opening was seen in cyprinid fish 
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(Van Wassenbergh and Rechter, 2011), perch (Osse, ‘69; Elshoud-Oldenhave, ‘79) and cichlid 

fish (Aerts, ‘90) when feeding on elusive prey, compensating for prey movement away from the 

mouth.  In the case of these batoids, the mimicked prey was always pulled away from the 

approaching A. narinari, unlike real elusive prey, which can move in any direction, including 

toward the mouth.  These results could be an over-emphasis of natural behavior with this 

“elusive” prey.   

Rhinoptera bonasus tended to bite at elusive prey when they were posterior to the mouth, 

while non-elusive prey was usually anterior of the mouth. Rhinoptera bonasus may be relying on 

different sensory receptors or modifying fluid dynamics involved in prey capture with different 

prey types.  However, this may not be the result of modulation.  Unlike the other batoids, which 

usually pinned prey to the substrate while tenting, the depression of the cephalic lobes in R. 

bonasus created a vertical wall anterior and lateral to the mouth, leaving space for the prey to 

move around within the tent (Fig. 3.2E).  This space may allow elusive prey to move posteriorly 

in response to the cephalic lobes rapidly depressing in front of them, resulting in this posterior 

preference. 

 

 Feeding success 

 The hypothesis that lobed batoids would be more successful in preventing prey escapes 

was not supported.  All batoid species were equally successful in capturing elusive prey.  There 

were very few prey escapes during pouncing, tenting and biting durations for all species (Fig. 

3.6), with no difference among species.  This suggests that the different strategies these batoids 

utilize make them very successful predators with these prey types, under these experimental 
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conditions. Modulation has been shown to increase capture success of elusive prey in bony fishes 

(Norton ‘91, Wainwright and Turingan, ‘93; Nemeth, ‘97).  In the leopard shark, Triakis 

semifasciata, and the whitespotted bamboo shark, C. plagiosum, slight modulation was seen with 

elusive prey while still maintaining high capture rates (Ferry-Graham, ’98; Lowry and Motta, 

2004).  The flexibility of the pectoral fins or cephalic lobes (Mulvany and Motta, 2013) forming 

a tent around prey, sensory receptors (Maruska and Tricas, ‘98; Chu and Wen, ‘79), 

manipulating water flow (Wilga et al., 2012), and modulatory ability all aid in the success of 

these organisms. However, it should be noted that capture success in the wild may be different, 

as division of foraging time and watching for predators may differ among species, more complex 

substrates may reduce tenting efficiency, and buried prey as well as different prey types may 

elicit different capture behaviors. 

The cephalic lobes may have evolved to help maintain feeding performance as locomotor 

modes shifted.  One advantage to undulatory locomotion in basal batoids during prey capture is 

the ability to maintain maneuverability (Rosenberger, 2001) while keeping the entire body close 

to the substrate.  Consequently, derived oscillatory batoids have less maneuverability while 

gliding along the substrate and may not keep their entire body as close to the substrate.  This 

could lead to difficulty in detecting a prey item, as the electrosensory receptors would be further 

away from the substrate.  The ability to depress the cephalic lobes may allow closer placement of 

these receptors to the substrate, as well as the maneuverability needed to manipulate prey toward 

the mouth.  The evolution of these kinetic cephalic lobes may have accompanied morphological 

changes related to locomotor styles, helping to retain feeding performance while allowing the 

exploitation of a more pelagic habitat. 
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CONCLUSIONS 

 In summary, we have found that lobed species predominantly use the head region for 

prey capture and not the entire body.  Lobed species handle prey faster and have a greater range 

of movement but have a slower bite duration compared to lobeless species.  All batoids were 

able to modulate prey capture behavior with different prey types.  Lobeless species had 

variability in tenting duration while lobed species modulated mouth opening (A. narinari) and 

anterior/posterior biting preference (R. bonasus). Despite these morphological and behavioral 

differences, all species were equally successful in prey capture, attesting to the availability of 

multiple strategies that maintain success in these predators under these laboratory conditions. 
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TABLES AND FIGURES 
 
Table 3.1.  List of batoid species studied.  Both males and females were used for all species.   

Species     Average DW (cm ± SE)      
Raja eglanteria  20.6 ± 1.25   
Urobatis jamaicensis  19.5 ± 1.29   
Dasyatis sabina  23.2 ± 2.16 
Aetobatus narinari  88.6 ± 6.23 
Rhinoptera bonasus  53.6 ± 1.41 
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Table 3.2.  Statistics for all the prey capture kinematic events. Arranged by (A) species, (B) prey 
type and (C) both species and prey type. Shaded values show significant differences.  For 
ANOVA results, cv = adjusted critical value from false discovery rate correction.  For mixed 
interactions, significant p-values for prey type are designated with “n” for non-elusive prey and 
“e” for elusive prey.  Ra. = R. eglanteria; U. = U. jamaicensis,; D. = D. sabina; A. = A. 
narinari; Rh. = R. bonasus.  Species with cephalic lobes are in bold.      

A. Species                                                 Mouth             Mouth                                Overall            
                    Pounce          Tenting        Opening          Closing            Bite                Event 

p-value, cv for species differences 2 way 
repeated 
ANOVA 

p = .001, 
cv = .004 

p = .001, 
cv = .008 

p = .014, 
cv = .033 

p = .001, 
cv = .0125 

p = .004, 
cv = .029 

p = .001, 
cv = .017 

Tukey p-value for differences among species 
Ra. U. p >.05 p >.05 p >.05 p >.05 p >.05 p >.05 
Ra. D. p >.05 p <.031 p >.05 p >.05 p >.05 p >.05 
U. D. p >.05 p <.031 p >.05 p >.05 p >.05 p >.05 
Ra. A. p <.012 p <.031 p = .039 p <.005 p >.05 p <.026 
Ra. Rh. p <.012 p <.031 p >.05 p <.005 p <.05 p <.026 
U. A. p >.05 p <.031 p >.05 p <.005 p >.05 p <.026 
U. Rh. p >.05 p <.031 p >.05 p <.005 p <.05 p <.026 
D. A. p >.05 p >.05 p = .046 p <.005 p >.05 p >.05 
D. Rh. p >.05 p >.05 p >.05 p <.005 p >.05 p >.05 
A. Rh. p >.05 p >.05 p >.05 p >.05 p >.05 p >.05 

B. Prey type 

p-value, cv for prey type differences 2 way 
repeated 
ANOVA 

p = .09,   
cv = .029 

p = .005, 
cv = .013 

p = .828, 
cv = .05 

p = .23,   
cv = .033 

p = .772, 
cv = .042 

p = .003, 
cv = .004 

Tukey p-value for prey type for each species 
Ra. p >.05 p = .003 p >.05 p >.05 p >.05 p = .006 
U. p >.05 p = .026 p >.05 p >.05 p >.05 p = .008 
D. p >.05 p >.05 p >.05 p >.05 p >.05 p >.05 
A. p >.05 p >.05 p = .013 p >.05 p >.05 p >.05 

Rh. p >.05 p >.05 p >.05 p >.05 p >.05 p >.05 

C. Mixed interactions 

p-value for differences among species and prey type 2 way 
repeated 
ANOVA p = .24 p = .119 p = .066 p = .051 p = .118 p = .098 
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Table 3.3. Average raw distance of prey from the batoid’s mouth at the start of a bite and % of 
bites anterior to the mouth for each species, elusive and non-elusive prey, successful and 
unsuccessful bites ± standard error (SE).   

Species Prey Type Bite 
Average 
distance  

(cm ± SE) 

% of 
anterior 

bites  ± SE 
successful 1.12 ± 0.13 0.72 ± 0.08 elusive 
failed 1.97 ± 0.10 0.82 ± 0.04 
successful 0.59 ± 0.06 0.78 ± 0.06 

R. eglanteria 
non-elusive  

failed 1.69 ± 0.10 0.91 ± 0.03 
successful 1.30 ± 0.13 0.59 ± 0.09 elusive 
failed 2.49 ± 0.27 0.42 ± 0.06 
successful 1.50 ± 0.19 0.27 ± 0.12 

U. jamaicensis 
non-elusive  

failed 2.00 ± 0.24 0.08 ± 0.08 
successful 1.29 ± 0.23 0.80 ± 0.09 elusive 
failed 2.12 ± 0.33 0.72 ± 0.09 
successful 0.78 ± 0.09 0.93 ± 0.05 

D. sabina 
non-elusive  

failed 1.58 ± 0.23 0.84 ± 0.09 
successful 4.96 ± 0.72 0.67 ± 0.13  elusive 
failed 9.96 ± 0.98 0.35 ± 0.10 
successful 4.23 ± 0.62 0.70 ± 0.11 

R. bonasus 
non-elusive  

failed 5.68 ± 0.68 0.73 ± 0.10 
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Table 3.4  Occurrence of modulation during stages of prey capture, noted by a significant change 
between elusive and non-elusive prey.   

 R. eglanteria U. jamaicensis D. sabina A. narinari R. bonasus 
Pouncing      
Tenting X X    
Mouth 
opening    X  
Mouth closing      
Bite duration      
Prey distance 
to mouth X X X X X 
Prey position 
during bite     X 
Vertical 
movement      
Horizontal 
movement     X 
# of bites      
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Figure 3.1.  Phylogeny of batoids.  Based on Aschliman et al. (2012) showing presence/absence 
of cephalic lobes and primary locomotor mode, modified from Sasko et al. (2006). 
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Figure 3.2.  Measurement of vertical angle of movement.  (A) Rhinoptera bonasus with cephalic 
lobes depressed, dotted line indicating lobe placement while retracted. Modified from Sasko et 
al., (2006).  (B) Dasyatis sabina with anterior pectoral fins elevated and the dotted line 
indicating the fins while depressed. The lines extend from the vertex, where the radials of the 
cephalic lobes or anterior pectoral fins attach to the propterygium, through the tips of the 
cephalic lobes or pectoral fins in elevated and depressed position. ɵ indicates the vertical angle 
of movement.  
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Figure 3.3.  Pounce duration.  Five sequential pictures from left to right showing lateral view of 
the pounce duration (initiation of pounce to the onset of tenting behavior) in R. eglanteria (A); 
D. sabina (B); U. jamaicensis (C); A. narinari (D) and both lateral (top half) and ventral (bottom 
half) views in R. bonasus (E).   



www.manaraa.com

  86 

  

Figure 3.4.  Results of kinematic capture analysis. Groups that share the same label are not 
significantly different.  Significant differences among species are marked with numbers (1 and 2) 
next to the species names. Boxes around the data bars indicate significant differences in prey 
type within species.  Error bars are standard error.    
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Figure 3.5.  Angle of movement of the rostrum or cephalic lobes during prey capture in the 
vertical plane (A) and horizontal plane (B).  Groups belonging to the same number label (1, 2 or 
3) are not significantly different.  Significant differences between prey type within species are 
marked with +.  Error bars are standard error.  
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Figure 3.6.  Number of bites and escapes.  Average number of bites per capture event needed to 
ingest elusive and non-elusive prey (A), and average number of prey escapes per capture event 
for elusive prey during pouncing (B), tenting (C) and while in the mouth (D).  Species without 
bars indicate zero values. White bars indicate elusive prey, grey bars indicate non-elusive prey.  
Error bars are standard error.   
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Figure 3.7. Map of prey location at the time of bite attempt.  Red dots signify successful bites, 
blue dots unsuccessful bites.  Significant differences in species for prey distance from mouth are 
indicated by 1 and 2.  For each species, a significant difference between prey type for all bites is 
indicated by a and b.  For each species, a significant difference between bite success is indicated 
by +. 
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CHAPTER FOUR: CORRELATION OF MORPHOLOGICAL AND BEHAVIORAL 

VARIABLES TO THE CEPHALIC LOBES: TAKING PHYLOGENY OUT OF THE 

PICTURE 

 

ABSTRACT 

Some derived, pelagic myliobatid rays possess cephalic lobes.  These lobes are modified 

portions of the anterior pectoral fins.  In lobeless batoids, the pectoral fins are used during 

locomotion and prey capture.  In lobed species, locomotion is partitioned to the pectoral fins 

while the cephalic lobes are used in prey capture.  Differences in habitat, locomotor style, 

morphology, and prey capture behavior may be associated with the cephalic lobes.  The aim of 

this study was to assemble morphological and behavior data and determine which variables 

correlated to the presence of the cephalic lobes.  The independent contrast method was used to 

phylogenetically correct the data.  After phylogeny was accounted for, most of the 

morphological variables correlated with the presence/absence of cephalic lobes while only one 

kinematic variable showed a correlation.  This supports the idea that changes in the pectoral fins 

associated with the shift to oscillatory locomotion and consequently a pelagic habitat are linked 

to the evolution of the cephalic lobes.  Changes in prey capture behavior, however, are associated 

with a factor other than the presence/absence of the cephalic lobes.     
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INTRODUCTION 

 The cephalic lobes are unique structures found in 39 myliobatid species, derived from the 

anterior pectoral fins (Bigelow and Schroeder, 1953; Nishida, 1990, Miyake et al., 1992).   Rays 

can have a single continuous lobe, as seen in Myliobatis, a single discontinuous lobe, as seen in 

Aetobatus, or two discontinuous lobes, as seen in Rhinoptera, Mobula and Manta (McEachran et 

al., 1996).  Radials (skeletal elements) of the anterior pectoral fins in lobeless species are similar 

to the cephalic lobe radials in lobed species, while the anterior pectoral fin radials in lobed 

species are quite distinct (Mulvany and Motta, 2013).  The fin rays (chains of radials extending 

from the propterygium) of the anterior pectoral fin of lobeless species and the cephalic lobe fin 

rays have a higher number of joints/cm and more circular cross sectional areas compared to the 

fin rays of the anterior pectoral fins in lobed species.  Furthermore, the musculature of the 

cephalic lobes is similar to the pectoral fin musculature, although an extra muscle layer running 

obliquely to the radials is found in the lobes.  The cephalic lobes have a higher electrosensory 

pore count compared to the anterior pectoral fins of lobeless species, while the anterior pectoral 

fins in lobed species do not appear to have any electrosensory pores.   

The cephalic lobes play a role in prey detection and capture, as they are covered with 

electrosensory and mechanotactile receptors, and are depressed over the substrate when 

searching for prey (Chu and Wen, 1979; Sasko et al., 2006; Mulvany and Motta, 2013); used for 

digging into the substrate by repeatedly depressing and retracting them to create feeding pits; and 

used to grasp/cup prey and maneuver or even channel prey toward the mouth (Notarbartolo-di-

Sciara, 1988; Sasko et al., 2006; Fisher et al., 2011; Mulvany and Motta, 2013).  Kinematic data 

show that species with cephalic lobes pounce on prey faster, handle prey faster and have an 

overall faster prey capture event compared to lobeless species (Chapter 2).  While lobeless 
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species utilize the pectoral fins for locomotion and prey capture, lobed species partition prey 

capture to the cephalic lobes and locomotion to the pectoral fins.   

Typical batoid locomotion consists of axial-undulatory locomotion or undulatory 

locomotion, where waves of bending propagate down the body or pectoral fins (Rosenberger and 

Westneat, 1999; Rosenberger, 2001).  The appearance of cephalic lobes coincides with a shift to 

oscillatory locomotion (Rosenberger, 2001; Schaefer and Summers, 2005; Sasko et al., 2006), in 

which the pectoral fins are depressed and elevated in a flapping motion.   Oscillatory swimmers 

have stiffer, more inflexible pectoral fins with skeletal cross-bracings compared to undulatory 

swimmers (Schaefer and Summers, 2005; Mulvany and Motta, 2013).  While undulatory 

locomotion offers flexibility and maneuverability, oscillatory locomotion produces lift and 

allows for sustained swimming at high speeds (Rosenberger, 2001).    

 Locomotor differences can be linked to changes in habitat for batoids.  Most undulatory 

batoids are benthic (McEachran and Carvalho, 2002), utilizing low speeds to maneuver close to 

the substrate.  Oscillatory batoids, however, are more pelagic, cruising at higher speeds in the 

water column (Rosenberger, 2001).  Though some oscillatory batoids such as mobulids and 

mantas are truly pelagic and feed in the water column, using the cephalic lobes to channel 

plankton into the mouth (Notarbartolo-di-Sciara and Hillyer, 1989), many others feed on the 

same benthic organisms as undulatory, benthic batoids (Bigelow and Schroeder, 1953; 

Compagno, 1977), predominantly polychaetes and crustaceans as well as fish, bivalves and squid 

(Bigelow and Schroeder, 1953; Compagno, 1977; Ebert and Cowley, 2003; Collins et al., 2007; 

Ebert and Bizzarro, 2007).  Whereas benthic species possess the flexibility and maneuverability 

in the pectoral fins needed for both prey capture and undulatory locomotion, pelagic species have 



www.manaraa.com

  93 

stiff oscillatory pectoral fins for locomotion and flexible cephalic lobes for prey capture 

(Mulvany and Motta, 2013).  

The phylogeny of batoids has been documented using morphological characteristics 

(Nishida, 1990; Lovejoy, 1996; McEachran et al., 1996; Shirai, 1996; Gonzalez-Isais and 

Dominguez, 2004), and more recently with molecular data (Doudy et al., 2003; Dunn, 2003; 

Winchell et al., 2004; Naylor et al., 2005; Rocco et al., 2007; Aschliman et al., 2012).  Though 

the studies differ in the number of species used and the species themselves, a general pattern of 

batoid phylogeny is confirmed.  Batoids are a monophyletic group with mobulids (devil rays), 

rhinopterids (cownose rays) and myliobatids (eagle rays) consistently shown as the most deeply 

nested group.  These pelagic batoids also possess cephalic lobes. Rajids (skates) are the most 

basal, benthic group of batoids while dasyatids (stingrays/whiprays) and urobatids (round rays) 

are shallowly nested.   

Some morphological studies (Lovejoy, 1996; McEachran et al., 1996) show urobatids as 

basal to dasyatids (Fig. 4.1A), while one study (Gonzalez-Isais and Dominguez, 2004) showed 

rhinopterids and myliobatids as sister taxa (Fig. 4.1B).  The most supported tree, with both 

morphological (Nishida, 1990; Shirai, 1996) and molecular data (Dunn et al., 2003; Aschliman et 

al., 2012), include urobatids and dasyatids as sister taxa as well as rhinopterids and mobulids as 

sister taxa (Fig. 4.1C).  Aschliman et al. (2012) paired molecular data with fossil records, 

yielding a phylogenetic tree with branch lengths for 37 batoid species.    

  One important factor in comparative studies is that closely related species tend to have 

similar phenotypes when compared to more distantly related species.  This is due to the 

comparatively brief time since speciation, the tendency of organisms to conserve their niche, and 
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consequently the tendency to have similar adaptive responses to environmental changes (Harvey 

and Pagel, 1991).   An important statistical assumption in any study is that all observations are 

independent of each other.  For species, the assumption of independence would be satisfied if the 

evolution of each species was independent and the divergence times were identical for all 

species.  A phylogenetic tree of independent species would have all branches radiating from a 

single node with equal branch lengths (Felsenstein, 1985; Fig. 4.1A).   Actual relationships 

among species are nested hierarchies, with some species more closely related to others (Fig. 

4.1B-D).  To satisfy the assumption of independence, the independent contrast method 

(Felsenstein, 1985) can be used to remove the effect of phylogeny by accounting for the 

relatedness among taxa, using the topography of a phylogenetic tree and branch lengths.  

Contrasts generated by this method are regarded as independent and can be used in statistical 

analyses. For instance, multiple studies using uncorrected data found a strong correlation 

between genomic size and effective population size in fish, plants and even across kingdoms 

(Lynch and Conery, 2003; Albach and Greilhuber 2004; Yi and Streelman, 2005), positing that 

genetic drift accounted for maladaptive genome sizes.  A more recent study found similar results 

when analyzing uncorrected data in 205 plant species, but the correlation between genome size 

and effective population size disappeared after retesting the data using phylogenetically 

independent contrasts (Whitney et al., 2010), suggesting that relatedness caused the correlation.    

Recent comparative studies on batoids have noted links between characteristics such as 

locomotor mode and habitat (Rosenberger, 2001; Macesic and Kajiura, 2010), skeletal 

calcification patterns and locomotor mode (Schaefer and Summers, 2005), feeding and habitat 

(Sasko et al., 2006), visual fields and habitat (McComb and Kajiura, 2008), but to our knowledge 

no studies have attempted to remove the effect of phylogeny to determine if these trends are a 
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result of relatedness or if these traits truly correlate to each other.  The purpose of this study is to 

analyze a suit of morphological and behavioral characters to determine if they correlate to the 

evolution of cephalic lobes.  It is hypothesized that the cephalic lobes will correlate to both the 

morphological and behavioral traits after removing the effects of relatedness, demonstrating the 

association of the cephalic lobes with a morphological and behavioral shift to a pelagic lifestyle. 

 

METHODS 

Twenty kinematic and morphological variables were examined for correlations to the 

presence or absence of cephalic lobes in five batoid species: Raja eglanteria (Bosc, 1800), 

Urobatis jamaicensis (Cuvier, 1816), Dasyatis sabina (Lesueur, 1824), Aetobatus narinari 

(Euphrasen, 1790) and Rhinoptera bonasus (Mitchill, 1815).   All variables, with the exception 

of habitat and the cephalic lobes, were continuous.  The use of discrete and continuous variables 

when generating independent contrasts is acceptable and does not violate any assumptions 

(Garland et al., 1992).  Discrete variables were coded following their evolutionary trajectories 

(more ancestral traits were coded as “0”, more derived traits as “1”) based on Nishida (1990), 

Lovejoy (1996) and Shirai (1996).   

Twelve continuous kinematic variables from Mulvany (Chapter 2) were used: 1.) pounce 

duration: the beginning of cephalic lobe depression to maximum depression for lobed species, 

the beginning of rostral elevation to when the rostrum touches the substrate in lobeless species; 

2.) tent duration: from the time of maximum lobe depression or when the rostrum touches the 

substrate until the mouth begins to open for a successful bite; 3.) mouth opening duration: from 

the onset of mouth opening to the time when the last part of the prey enters the mouth; 4.) mouth 
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closing duration: from the time when the last part of the prey enters the mouth until the mouth 

closes; 5.) bite duration: from mouth opening to mouth closing (parts 3 and 4 combined); 6.) total 

capture event: from onset of pounce to mouth closing (parts 1-5 combined); 7.) pounce escape: 

the number of times a prey escaped during the pouncing duration; 8.) tent escape: the number of 

times a prey escaped during the tenting duration; 9.) mouth escape: the number of times a prey 

escaped during mouth opening or closing duration; 10.) the number of bites: the average number 

of bites for a prey capture event; 11.) vertical movement: angle movement of the tips of the 

cephalic lobes or rostrum in the vertical plane; 12.) horizontal movement: angle movement of the 

tips of the cephalic lobes or rostrum in the horizontal plane.   

In addition, six continuous morphological variables from Mulvany and Motta (2013) 

were used: 13.) number of pectoral fin skeletal fin ray joints per cm; 14.) Ilat/IDV calcified: for the 

calcified potions of the pectoral fin radials, this is a measurement of the resistance to bending in 

the lateral plane over the resistance to bending in the dorsoventral plane. A ratio higher than one 

would indicate higher resistance in the lateral plane, a ratio below one would indicate higher 

resistance in the dorsoventral plane while a ratio of 1 would indicate equal resistance in both 

planes; 15.) Ilat/IDV whole: the same calculations as the former variable, but examining the entire 

radial instead of solely the calcified portions; 16.) the insertion point of the abductor superficialis 

muscle on the pectoral fin radial; 17.) the insertion point of the adductor superficialis muscle on 

the pectoral fin radial; 18.) the number of electrosensory pores on the pectoral fin.   

Data quantifying the continuum of undulatory to oscillatory locomotion for several batoid 

species and the habitats according to Rosenberger (2001) were used for 19.) locomotor mode: the 

number of waves present per fin length.  Missing locomotor data for U. jamaicensis and A. 

narinari were replaced with data from their closest relative.  Data on Taeniura lymma was used 
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as proxy for U. jamaicensis and data from R. bonasus was used as a proxy for A. narinari; and 

20.) habitat: benthic = 0, pelagic = 1.   

All variables were tested for a correlation to the presence or absence of cephalic lobes, 

with each species coded as 0 = lobes absent; 1 = lobes present.  The full correlation analysis of 

all variables is found in Appendix A and B.  However, because this study focuses on the cephalic 

lobes, primarily correlations with the cephalic lobes are included in the results section and 

discussed. Data from individuals of each species were averaged and all data were normalized by 

subtracting the mean from each value and dividing by the standard deviation.  A Pearson 

correlation was performed to determine correlations between any variables and the cephalic 

lobes using Sigmastat v. 3.1 (SYSTAT Software, San Jose, CA).  

In order to account for phylogenetic relationships among the data, the phylogenetic 

independent contrast method (Felsenstein, 1985; Garland et al., 2005) was used.  A resolved 

phylogenetic tree of the six batoid species based on morphological and molecular data was 

utilized (Nishida, 1990; Shirai, 1996; Dunn et al., 2003; Aschliman et al., 2012).  Branch lengths 

were taken from Aschliman et al. (2012), using estimated divergences times under Bayesian 

approaches (Fig. 4.2).  The averaged, normalized data were entered into Mesquite v.2.75 

(Maddison and Maddison, 2011).  The PDAP:PDTREE package of Mesquite (Midford et al., 

2005) was used to generate the independent contrasts using the aforementioned constructed tree.   

The absolute values of the standardized contrasts for each variable were regressed against 

the square root of the sum of the corrected branch lengths (their standard deviation) to verify that 

the branch lengths corresponded to the data, indicated by a slope not significantly different from 

0.  The raw, positivized contrasts were exported from Mesquite and divided by their standard 
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deviations (Midford et al., 2005).  A Pearson correlation was run using the phylogenetically 

independent contrasts (PICs) to determine which variables were correlated to the presence or 

absence of cephalic lobes.  

 

RESULTS 

The phylogenetically uncorrected correlations showed that 9 out of the 20 variables 

correlated to the presence of cephalic lobes (Table 4.1).  Locomotion (p = .026), pounce duration 

(p = .022), number of joints/cm (p = .017) and number of electrosensory pores (p = .021) all 

correlated negatively to the presence of cephalic lobes.  Habitat (p <.001), horizontal movement 

(p <.001), Ilat/IDV calcified (p = <.001), abductor superificalis insertion (p = .031), adductor 

superficialis insertion (p = .002) were all positively correlated with the presence of cephalic 

lobes. 

The regression of the raw contrasts against their standard deviation for each variable 

confirmed that the branch lengths corresponded to the data (p >.05).  Scatterplots of each 

variable’s contrast against positived contrast can be found in Appendix C.  The phylogenetically 

corrected Pearson correlations showed that 6 of the 20 variables correlated to the cephalic lobes 

(Table 4.1).  Locomotion (p = .027) and number of electrosensory pores negatively correlated to 

the presence of cephalic lobes while habitat (p <.001), horizontal movement (p= .008), Ilat/IDV 

calcified (p = .003) and adductor superficialis insertion (p = .014) positively correlated with the 

cephalic lobes.  Interestingly, habitat correlated to the same 6 variables as the cephalic lobes, 

while locomotion correlated to 5 of the 6 variables (Appendix B).   
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DISCUSSION 

Our hypothesis that the presence/absence of cephalic lobes would correlate to 

morphological variables before and after correcting for phylogeny was supported while the 

correlation to kinematic variables was not supported before or after relatedness of the taxa was 

taken into account.  Overall, the uncorrected correlations showed that five of the six 

morphological variables and two of the 12 behavioral variables correlated with the presence of 

the cephalic lobes.  After removing the effect of phylogeny, three morphological and one 

behavioral variable still showed a significant relationship with the cephalic lobes. Habitat and 

locomotion were correlated to the presence of the cephalic lobes before and after correcting for 

phylogenetic inertia.  

 

Morphological variables 

Two morphological traits correlated to the presence of cephalic lobes using uncorrected 

data, but showed no relationship after phylogenetic corrections: the number of fin ray joints/cm 

in the pectoral fin and the insertion of the abductor superficialis muscle (Table 4.1). Because 

closely related species tend to share similar characteristics (Harvey and Pagel, 1991), 

correlations using uncorrected data can occur that are simply due to the relatedness among 

species.  Though the most deeply nested, lobed species (Aetobatus narinari and Rhinoptera 

bonasus) exhibited the lowest number of joints/cm, Raja eglanteria, the most basal species, 

possessed fewer joints/cm compared to more derived lobeless species (Urobatis jamaicensis and 

Dasyatis sabina) (Mulvany and Motta, 2013).  The lack of unidirectional change in the number 
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of joints/cm through phylogeny likely accounts for the lack of the correlation to the cephalic 

lobes.     

The Ilat /IDV for calcified portions of the pectoral fin radials correlated to the 

presence/absence of cephalic lobes after taking phylogeny into account (Table 4.1). Ilat /IDV was 

higher in lobed species, A. narinari, R. bonasus and Mobula munkiana, indicating more 

resistance to bending in the lateral plane compared to the radials of the lobeless species, R. 

eglanteria, U. jamaicensis and D. sabina, which had better resistance bending in both planes 

(Mulvany and Motta, 2013).  Lobed species exhibit crustal calcification, with a layer of 

calcification surrounding the perimeter of the radials, while lobeless species exhibit catenated 

calcification, with struts of calcification running along the edges of the radials (Schaefer and 

Summers, 2005; Mulvany and Motta, 2013).  The number and placement of the struts can vary in 

lobeless species, meaning the Ilat /IDV of the calcified struts is independent of the overall radial 

cross sectional shapes.  Crustal calcification in lobed species, however, is based on the cross 

sectional shape of the radials, which are more dorso-ventrally flattened.  The higher Ilat /IDV 

values for lobed species may reflect differences in calcification patterns.  For a given amount of 

calcified material, the crustal calcification pattern yields higher stiffness than the catenated 

pattern, which is important for oscillatory swimmers (Schaefer and Summers, 2005).  As 

oscillatory locomotion also correlates to higher Ilat /IDV values as well as the presence of cephalic 

lobes (Appendix B), this shows that the examined morphological variable involved with stiffness 

(Ilat /IDV) is linked to locomotor mode and the presence/absence of cephalic lobes.  

Insertions of the adductor superficialis were also correlated to the presence/absence of 

cephalic lobes (Table 4.1), with the muscle inserting ½ to 3/5 down the fin rays in lobeless 

species and down the length of the entire fin ray in lobed species (Mulvany and Motta, 2013).  
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As locomotor mode is also correlated to the adductor superficialis and the cephalic lobes 

(Appendix B), this may be the driving force behind the correlation of the cephalic lobes to the 

adductor superficialis muscle.  During the upstroke and downstroke of oscillatory locomotion, 

the fin rays are moving collectively, which requires ample stiffness (Schaefer and Summers, 

2005) and force generated by muscles.  Cross sectional thickness of the pectoral fins, in effect 

muscle cross sectional area, was higher in oscillatory batoids compared to undulatory batoids 

(Fontanella et al., 2013).  As the cross sectional area of muscles, sharing the same architecture, is 

proportional to the force generated (Huber and Motta, 2004), oscillatory species generate more 

force.  Attachment of the muscles along the length of the fin rays helps to increase the lever arm, 

thus increasing force efficiency.  The presence of the cephalic lobes shifted prey capture 

behavior from whole body tenting to cephalic tenting (Chapter 2), presumably allowing a 

concomitant modification of the pectoral fin morphology to better suite oscillatory locomotion 

while still retaining the ability to capture benthic prey.  

It has been shown that morphological differences in the pectoral fin reflect the 

requirements for locomotor modes in batoids (Schaefer and Summers, 2005; Fontanella et al., 

2013) as well as other fishes (Webb, 1984; Drucker and Lauder, 2002).  Flying squirrels that 

aerially locomote have long forelimbs for shock absorption when landing and short hindlimbs 

that reduce drag while gliding, while chipmunks that move on the ground have short forelimbs 

for digging and long hindlimbs that increase stride length (Essner Jr., 2007).  The climbing gecko 

has adhesive toe pads and a sprawled posture, advantageous for vertical climbing, while ground 

geckos lack adhesive toe pads and have erect posture, advantageous for movement on the ground 

(Aerts et al., 2000).  Ilat /IDV  and the insertion of the adductor superficialis in these batoids both 

correlated to locomotion as well as habitat (Appendix B).  This suggests that the evolution of the 
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cephalic lobes, which is closely tied to changes in pectoral fin morphology, subsequently links to 

the shift from undulatory to oscillatory locomotion in pelagic species that feed on predominantly 

benthic organisms.     

 The pectoral fin electrosensory pore counts showed a significant negative correlation to 

the presence of cephalic lobes (Table 4.1), indicating that the anterior pectoral fins in lobed 

species are not often used in prey detection and handling.  Electrosensory receptors function in 

prey detection and localization (Kalmijn, 1971) and the strength of the electric field generated by 

a prey item rapidly decreases with distance, limiting electrosensory detect to around 5-10 cm 

(Kalmijn, 1988; Tricas and Sisnero, 2004; Jordan et al., 2009). Lobeless species that utilize the 

pectoral fins for prey capture and handling have significantly more electrosensory pores on the 

pectoral fins that can help localize prey under the body, whereas lobed species that utilize the 

pectoral fins for primarily locomotion have no pectoral fin electrosensory pores (Mulvany and 

Motta, 2013).  The cephalic lobes in A. narinari and R. bonasus, which are used for prey 

handling, are covered with electrosensory pores, emphasizing their role in prey localization as 

well as capture (Mulvany and Motta, 2013).  Mobulid and manta species lack electrosensory 

pores on the cephalic lobes (Chu and Wen, 1979; Mulvany and Motta, 2013), and these species 

utilize the lobes to channel water into their mouths as they filter-feed on plankton (Notarbartolo-

di-Sciara and Hillyer, 1989). 

 

Kinematic variables 

 Very few kinematic variables correlated to the presence/absence of the cephalic lobes, 

before and after the phylogenetic correction.  For many kinematic variables with significant 
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differences among species, at least one lobeless species, usually D. sabina, grouped with lobed 

species, A. narinari and R. bonasus.  Rhinoptera bonasus displayed a significantly higher degree 

of vertical movement of the cephalic lobes compared to A. narinari and the anterior pectoral fins 

of lobeless species.  Differences among species for kinematic results appear to be less linked to 

the evolution of the cephalic lobes, but rather other factors such as jaw morphology, 

hydrodynamics when manipulating water flow or the use and distribution different sensory 

receptors.  Jaw protrusion can vary in batoids, with some species able to protrude the jaws 100% 

of their head length (Dean and Motta, 2004), while other species show less than 1 cm of 

protrusion (Wilga and Motta, 1998; Summers, 2000).  Skates are known to manipulate water 

flow under the body using the pectoral fins (Wilga et al., 2012).  Other batoids may do the same, 

though morphological differences among batoids could result in different flow manipulation 

techniques.  The integration of electroreception, olfaction, mechanotactile, vision and lateral line 

sensors has recently been studied in sharks (Gardiner et al., in prep), showing that species-

specific hierarchies exist for various stages of feeding.  Utilization of different senses or 

combinations of senses during prey capture, as well as differences in the distribution of the 

receptors may correspond to kinematic differences.   

Pounce duration negatively correlated to the presence of cephalic lobes (Table 4.1), 

though this trend vanished after correcting for phylogeny.  Lobed species, A. narinari and R. 

bonasus, tended to exhibit faster pouncing durations compared to lobeless species, but due to the 

relatedness of the species rather than the presence/absence of cephalic lobes.  Pounce duration is 

likely influenced by locomotor speed.  Lobed species can cruise at speeds around 2.06-2.57 m s-1 

(Webb, 1984; Smith and Merriner, 1987; Fontanella et al., 2013) and often initiate pounces while 

cruising.  Although lobeless species, like D. sabina, show cruising speeds of .87 m s-1 (Wilborn, 
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2007), lobeless species often pounce from a standstill and may be using burst locomotion which 

can faster than normal cruising speeds (Bainbridge, 1962; Barnett et al., 2010).  The use of burst 

locomotion in some species may be enough to narrow the gap in pounce durations between lobed 

and lobeless species, rendering an insignificant correlation between the presence/absence of 

lobes and pounce duration.    

 The amount of horizontal movement of the cephalic lobes or anterior pectoral fin during 

prey capture was significantly correlated to the presence/absence of cephalic lobes with 

phylogenetically corrected data (Table 4.1).  Because the pectoral fins extend anteriorly, laterally 

and posteriorly in lobeless species, there are no gaps when forming a tent over a prey item with 

the fins.   There is, however, a gap between the pectoral fins and cephalic lobes which could 

provide prey with a sizeable access of escape.   Horizontal movement of the cephalic lobes fans 

out the lobes to block this gap, preventing escape, particularly in Rhinoptera bonasus (Sasko et 

al., 2006; Chapter 2).  High mobility in cephalic appendages used for prey capture and handling 

can be seen in other species.  The Florida manatee, Trichechus manatus, utilizes its highly 

mobile, muscular snout and perioral bristles to trap and manipulate food into the mouth 

(Marshall et al., 1998).  Centipedes have forcipules, modified anterior legs with multiple joints 

and a wide range of motion, that are used to grasp, manipulate as well as invenomate prey 

(Bonato and Minelli, 2009; Dugon et al., 2012).  The prominent trunk in elephants is comprised 

of radially, transversely and longitudinally arranged muscles that allow a wide range of 

movement used for multiple behaviors, including handling food (Boas and Pauli, 1908). 
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Habitat and locomotion 

Relationships among morphology, locomotion and habitat have been found in various 

species.  Among six species of Jamaican bats, those with short, rounded wings fly at slower 

speeds and forage in edge habitats while bats with long, pointed wings fly at high speeds and 

forage in open habitats (Emrich et al., 2013), though no correction for phylogeny was performed. 

Differences in body shape and tail/flipper aspect ratio correlate to habitat and prey type in four 

species of baleen whales, though phylogenetic effects were not accounted for (Woodward et al., 

2006). After accounting for phylogeny, Anolis lizards with longer limbs were found to run faster 

on broad surfaces and prefer tree trunk habitats, compared to lizards with shorter limbs, which 

run faster on narrow surfaces and prefer small branches (Irschick and Losos, 1999; Calsbeek and 

Irschick, 2007).  Pectoral fin musculature in Lake Malawi cichlids is correlated to bethic/limnetic 

habitat and feeding behavior, taking into consideration the effect of phylogeny (Husley et al., 

2013).  Benthic species have larger pectoral fin musculature compared to limnetic species, 

possibly for locomoting through more complex environments as well as increased locomotor 

force needed to scrape or remove attached prey off the substrate.  Labrids found in different reef 

habitats show high correlations between locomotor and feeding morphology, after correcting for 

phylogenetic effects (Collar et al., 2008).  Labrid fishes in open habitats possess cranial traits that 

increase striking speed and pectoral fin traits that increase swimming speed, while benthic 

labrids that pick attached prey off the substrate possess traits that increase bite force and 

locomotor maneuverability.   

This present study also found a relationship among morphology, locomotion and habitat.  

The presence of cephalic lobes correlated to oscillatory locomotion and a pelagic habitat using 

both uncorrected and corrected data (Table 4.1).  Oscillatory locomotion is defined as having less 
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than half a wave on the fins (Rosenberger, 2001).  This locomotor mode requires stiff pectoral 

fins to transmit the force of the downward and upward strokes, with the fin rays moving more or 

less in unison (Schaefer and Summers, 2005), as opposed to undulation in which some fin rays 

are depressed while others are elevated to form more than one wave across the fins.  The 

dexterity needed for prey capture seemingly conflicts with the rigidity needed for oscillatory 

locomotion.  The cephalic lobes provide a way to both utilize oscillatory locomotion and 

successfully capture benthic prey by taking on the role of prey capture.  Gymnura micrura, a 

predominantly benthic, lobeless batoid, utilizes undulatory locomotion on the substrate but a 

more oscillatory locomotion in the water column (Rosenberger, 2001), though are not known to 

travel long distances.  Their diet consists of 89-99% teleosts (Jacobsen et al., 2009; Jacobsen and 

Bennett, 2013; Yokota et al., 2013), suggesting that the cephalic lobes may play a key role in 

maintaining the feeding success of specifically benthic prey.  

Though A. narinari and R. bonasus spend most of the time in the water column and are 

classified as pelagic, they feed on benthic prey (Bigelow and Schroeder, 1953; McEachran and 

Carvalho, 2002).  The only other pelagic stingray known thus far is the pelagic stingray 

(Pteroplatytrygon violacea), a lobeless dasyatid ray with an intermediate locomotor mode, 

between true undulation and true oscillation (Rosenberger, 2001).  Cross-bracings, which help 

reinforce and stiffen the pectoral fin radials, are found in A. narinari and R. bonasus (Mulvany 

and Motta, 2013) but are absent in P. violacea, along with undulatory species (Schaefer and 

Summers, 2005). Also unlike A. narinari and R. bonasus, P. violacea feeds in the water column, 

wrapping its pectoral fins around fish (Jordan et al., 2009).  Having a different feeding strategy 

may have facilitated an intermediate morphology, where some pectoral fin flexibility is 

maintained.  It is not certain if G. micrura migrates long distances (Neer, 2008) though some 
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distribution data suggests that females may pup off the coast of Central America and then 

migrate to Southern California (Mollet, 2002).    

   

CONCLUSIONS 

 After accounting for similarities due to phylogeny, most of the morphological variables 

correlated to the presence/absence of cephalic lobes whereas only one kinematic variable showed 

a relationship to the cephalic lobes.  This signifies that the morphological changes in the pectoral 

fins, attributed to changes in locomotor style, are associated with the evolution of the cephalic 

lobes.  As the function of prey capture was delegated to the maneuverable cephalic lobes, the 

pectoral fins were free to evolve in previously constrained ways.  The lack of correlation with the 

majority of kinematic variables suggests that differences in prey capture kinematics are not a 

result of the presence/absence of cephalic lobes but some other driving factor(s).  Expanding this 

study to include more species, particularly the lobeless G. micrura, which feeds in the water 

column and the lobeless, pelagic P. violacea, may help to elucidate the link between the cephalic 

lobes, feeding behavior, morphology and ecology.  However, the need for a complete, 

continuous dataset to run the independent contrast method limits the ability to greatly expand this 

study.  Overall, this study supports the idea that the cephalic lobes played a role in the shift to a 

pelagic habitat while maintaining the ability to feed on benthic prey.   
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TABLES AND FIGURES 

 

Table 4.1.  List of continuous behavioral and morphological variables used in a Pearson 
correlation analysis.  Uncorrected values do not account for phylogeny.  Corrected values 
generated using phylogenetically independent contrasts. * denotes a significant correlation to the 
presence of cephalic lobes.   

 

           Uncorrected            Corrected 
                                            Correlation            Correlation 
Variable          Coefficient (r)   p-value       Coefficient (r)    p-value 

Habitat    1  <.001*  1  <.001* 
Locomotion   -.921  .026*  -.974  .027* 
Pounce duration  -.93  .022*  -.911  .090 
Tenting duration  -.835  .079  -.809  .191 
Mouth opening duration  .798  .11  .522  .478 
Mouth closing duration  .791  .11  .843  .157 
Bite duration    .741  .15  .334  .67 
Total capture duration  -.867  .057  -.866  .134 
Pounce escape   -.046  .94  -.043  .96 
Tent escape   .517  .37  -.0125  .99 
Mouth escape   .247  .69  .336  .66  
Ave # bites   -.224  .72  -.495  .51 
Vertical movement  .748  .15  .762  .24 
Horizontal movement   .993  <.001*  .992  .008* 
Ave. # of joints/cm    -.943  .017*  -.92  .08 
Ilat/IDV whole   -.0621  .92  -.0561  .94 
Ilat/IDV calcified  994  <.001*  .997  .003* 
Abductor superficialis   .913  .031*  .844  .16 
      insertion  
Adductor superficialis   .987  .002*  .986  .014* 
      insertion 
# of electrosensory pores -.931  .021*  -.967  .033* 
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Fig. 4.1.  Differing batoid phylogenies.  (A)  The phylogeny if all species were statistically 
independent of each other; (B) The phylogeny based on 39 and 65 morphological characters 
from Lovejoy (1996) and McEachran et al., (1996), respectively; (C) the phylogeny based on 77 
morphological characters from Gonzalez-Isais and Dominguez (2004); (D) the phylogeny base 
on 104 and 105 morphological characters from Nishida (1990) and Shirai (1996) and the 
mitochondrial DNA and tRNA data from Dunn et al. (2003) and mitochondrial and nuclear DNA 
data from Aschliman et al. (2012). 
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Fig. 4.2.  Phylogeny of select batoids with branch lengths.  Modified from Aschliman et al., 
2012.   
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CHAPTER FIVE: FINAL CONCLUSIONS 

 

 This research examines the relationship between the morphology and function of the 

cephalic lobes in batoids, with respect to ecology and phylogeny.  The study of novel structures 

often illustrate how changes in morphology correspond to ecological changes (Lachaise et al., 

2000; Widelitz et al., 2007; Konow et al., 2008; Hernandez et al., 2009).  The cephalic lobes in 

myliobatid rays present an interesting situation where novel structures arose to maintain benthic 

feeding while a concomitant shift in locomotor mode and habitat occurred, changing the overall 

ecology of these batoids.  In the most derived batoids, the mobulids and mantas, the cephalic 

lobes have again functionally shifted to a role in pelagic prey capture, making these species truly 

pelagic (Notarbartolo-di-Sciara and Hillyer, 1989).   

The first goal of this study was to examine the morphology of the anterior pectoral fins 

and cephalic lobes in six phylogenetically representative groups of batoids that differ in 

locomotor ability, habitat, and the presence or absence of cephalic lobes:   the clearnose skate, 

Raja eglanteria, the yellow stingray, Urobatis jamaicensis and the Atlantic stingray, Dasyatis 

sabina represented lobeless, benthic batoids that primarily utilize undulatory locomotion; the 

spotted eagle ray, Aetobatus narinari and cownose ray, Rhinoptera bonasus represented lobed, 

pelagic batoids that utilize oscillatory locomotion and feed on benthic organisms; the spinetail 

mobula, Mobula japonica, the smoothtail mobula, Mobula thurstoni, the Monk’s devil ray, 
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Mobula munkiana, and the giant manta, Manta birostris represented lobed, pelagic batoids that 

utilize oscillatory locomotion and filter feed in the water column.  The cephalic lobes were found 

to have numerous morphological modifications to the skeleton, musculature, and electrosensory 

pores that correspond with a functional shift from locomotion to prey detection and capture. The 

second goal of this study was to examine the use of the cephalic lobes in prey capture in a subset 

of these species: R. eglanteria, U. jamaicensis, D. sabina, A. narinari, and R. bonasus.  In the 

lobed species, A. narinari and R. bonasus, prey capture was found to be localized to the cephalic 

region, pounce and tent durations were faster, but capture success was equal to lobeless species.  

Modulation, indicated by a significant change in the kinematic variables with a change in prey 

type, was seen in all species, although contrary to expectation, lobed species did not display 

greater ability to modulate prey capture behavior.  The final goal of this study was to determine 

if the presence/absence of cephalic lobes correlated to any of the morphological and behavioral 

variables, accounting for the relatedness of species.  Phylogenetically corrected correlations 

showed that the majority of the morphological variables, along with locomotor mode and habitat, 

had a relationship with presence/absence of the cephalic lobes while only one kinematic variable 

displayed a correlation with the presence/absence of cephalic lobes.   

 

MORPHOLOGY 

Variation in the cross sectional area, second moment of area, calcification patterns, and 

flexibility of skeletal elements revealed distinct differences between the pectoral fin radials in 

oscillatory swimmers, A. narinari, R. bonasus and M. munkiana and the radials of the cephalic 

lobes and pectoral fins of undulatory species, R. eglanteria, U. jamaicensis, and D. sabina.  The 
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morphology of the pectoral fins of oscillatory swimmers showed increased stiffness through 

inter-radial cross bracings, crustal calcification patterns and decreased number of radial joints.  

Stiffness and increased resistance to bending is needed for oscillatory locomotion (Schaefer and 

Summers, 2005), as well as other forms of locomotion that put a high amount of force on the 

skeleton (Lauder et al., 2006).  The cephalic lobes and pectoral fin radials of undulatory species 

showed adaptations to increase maneuverability, with more circular radial cross sectional areas, 

lower ILat/ IDV, increased number of joints/cm and a lack of cross bracings.  High 

maneuverability is needed for prey capture and undulatory locomotion, as the fin rays 

independently move to bend certain portions of the fins/lobes (Rosenberger, 2001) to locomote, 

manipulate and excavate prey (Gudger, 1914; Sasko et al., 2006) and even control water flow 

underneath the body during prey capture (Wilga et al., 2012).   

The pectoral fin musculature for all examined species is comprised of two dorsal 

(abductor superficialis and profundus) and two ventral (adductor superficialis and profundus) 

muscles that insert along the radials.  The cephalic lobes also contain these muscles, though the 

adductor and abductor superficialis muscles insert at the very distal edge of the lobes via 

tendons, much like the flexor and extensor digitorum muscles in humans (Gray, 1977).  In 

addition to these four previously described muscles (Rosenberger and Westneat, 1999), the 

dorsal oblique muscle, a novel muscle running at an oblique angle to the radials, was found in 

the cephalic lobes, possibly increasing dexterity and control of the lobes.  Increases in muscle 

numbers or subdivisions, along with diversity in muscle orientation have been linked to the 

ability to perform more complex and dexterous movements (Boas and Pauli, 1908; Friel and 

Wainwright, 1998; Marshall et al., 1998).   
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Electrosensory pores were found on the cephalic lobes of Aetobatus narinari and 

Rhinoptera bonasus and the pectoral fins of lobeless species.  This indicates that the pectoral fins 

in lobeless species and the cephalic lobes of A. narinari and R. bonasus are used in prey capture, 

as the electrosensory receptors are used in part for prey detection (Tricas and Sisnero, 2004).  

The paddlefish similarly utilizes electrosensory receptors on the rostrum to detect plankton in 

turbid, low visibility rivers (Nachtrieb, 1910; Wilkens et al., 1997).  Electrosensory pores were 

absent in the pectoral fins in lobed species, which are not used for prey capture but primarily for 

locomotion.  The cephalic lobes in mobulid and manta species did not have electrosensory pores, 

but cephalic lobes in these species are used hydrodynamically to channel water and entrained 

plankton into the mouth (Notarbartolo-di-Sciara and Hillyer, 1989), not prey detection.  

Similarly, the megamouth shark, Megachasma pelagios, and basking shark, Cetorhinus 

maximus, which also filter feed, have relatively few electrosensory pores on the head (Kempster 

and Collin, 2011a; Kempster and Collin, 2011b).  The distribution of examined ampullary pores 

was uniform for all species except on the cephalic lobes of R. bonasus, where the distal edges of 

the lobes had higher concentrations of pores.  Because the lobes are laterally placed on R. 

bonasus, it is not possible to have both lobes parallel to the substrate when depressed.  The distal 

edges of the lobe are closest to the substrate, and thus having a higher concentration of 

electrosensory pores may increase detection ability and spatial resolution (Raschi, 1978).   

 

KINEMATICS 

As suggested by the electrosensory pore distributions and the skeletal morphology, 

lobeless species utilized the pectoral fins for prey capture and manipulation while lobed species 
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utilized the cephalic lobes to capture and manipulate prey. Pouncing and prey handling time 

tended to be faster in lobed species, perhaps due to the high cruising speeds when initiating prey 

capture, and the fact that prey capture was localized to the head and cephalic lobes instead of the 

entire body.  The increased complexity of the cephalic lobe musculature corresponded to a wider 

range of movement seen in the horizontal plane for lobes species compared to lobeless species.  

However, only the cephalic lobes of R. bonasus showed greater movement in the vertical plane 

compared to the anterior pectoral fins in lobeless species.  Bite duration tended to be longer for 

lobed species, perhaps a consequence of having more force efficient, thus less speed efficient, 

jaws to consume hard prey (Turingan et al., 1995; Huber et al., 2005; Westneat, 2006).   

With increased functional morphological complexity of the cephalic lobes, it was 

hypothesized that there would be increased modulation during prey capture for these species, as 

has been reported for other fishes (Liem, 1979; Turingan and Wainwright, 1993; Wilga and 

Motta, 1998). This hypothesis was not supported as modulation based on prey elusivity was seen 

in all batoids during certain stages of prey capture.  Modulation of prey capture with different 

prey types was seen in the lobeless R. eglanteria and U. jamaicensis during tenting duration, 

taking longer to handle elusive prey before successfully feeding.  Longer handling times have 

been noted in other cartilaginous (Lowry and Motta, 2007) and bony (Brachvogel et al., 2013) 

fishes. This most likely reflects the increased complexity in handling elusive prey.  The shorter 

duration of prey handling time in lobed species may be due to the reduced tented area available 

for prey to move around, as tenting is only in the head region.  The cephalic lobes also have 

higher electrosensory pore counts than the pectoral fins, possibly increasing spatial resolution 

(Raschi, 1978).  For all species, elusive prey was at a greater distance from the mouth compared 

to non-elusive prey at the beginning of mouth opening (for both unsuccessful and successful 
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bites).  This may indicate increased complexity in manipulating elusive prey, as pinning prey to 

the substrate to prevent movement also prevents repositioning prey closer to the mouth before 

biting. These batoids could also be initiating biting, and thus suction, when elusive prey are 

farther away in an attempt to prevent prey escapes.  The elusive prey may also have simply 

evaded the mouth during biting, increasing distance.   

Ultimately, even with increases in handling times and prey distance from the mouth, 

batoids were very successful at feeding on prey that had been tented, either by the body or 

cephalic lobes.  Using the head region and cephalic lobes for prey capture in lieu of the pectoral 

fins and consequently the entire body appeared to have no effect on prey capture success, as 

there were very few prey escapes under laboratory conditions for all batoids.  As prey capture 

became confined to the head region, the pectoral fins of lobed species were free to shift to an 

oscillatory locomotor style that suited the shift to pelagic habitats.   

 

CORRELATIONS AMONG MORPHOLOGICAL, KINEMATIC AND ECOLOGICAL 

VARIABLES AND THE CEPHALIC LOBES 

The independence of data is an assumption of statistical tests.  However, when examining 

trends among groups of species, the relatedness of taxa violates that assumption, as some species 

are more closely related than others (Felsenstein, 1985).  More closely related species often share 

similar characteristics due to the shorter divergence time (Harvey and Pagel, 1991).  Therefore, 

the expectation that closely related taxa should be more similar while divergent taxa should be 

more different must be accounted for, as statistical analyses assume taxa to be equally related.  

The independent contrast method uses phylogenetic tree topography to account for the 
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evolutionary relationship among species, generating contrasts that are statistically independent of 

each other and thus do no violate the assumption of independence (Felsenstein, 1985).  

The phylogenetically corrected data showed that most of the skeletal, musculature and 

electrosensory pore variables correlated to the presence/absence of the cephalic lobes.  Less 

circular radial cross sections, muscle insertions on the radials of the anterior pectoral fins, and a 

decrease in the number of electrosensory pores are all morphological modifications for 

oscillatory locomotion in the pectoral fins of lobed species.  Fin morphology is often linked to 

locomotor mode in fishes (Webb, 1984; Drucker and Lauder, 2002; Schaefer and Summers, 

2005).  The presence of cephalic lobes also showed a direct correlation to oscillatory locomotion 

as well as a pelagic habitat.  

Only two of the twelve kinematic variables (pounce duration and horizontal movement) 

correlated with the presence/absence of the cephalic lobes, before correcting for phylogeny.  

However, after the phylogenetic correction, pounce duration did not correlate to the 

presence/absence of cephalic lobes.  This indicates that although pounce duration was longest in 

the most basal species, R. eglanteria, of intermediate duration in the more derived species, U. 

jamaicensis and D. sabina, and shortest in the most derived species, A. narinari and R. bonasus, 

the trend was not strong enough after the phylogenetic correction to show a significant 

correlation.  Pounce duration may instead be dependent on other variables, such as jaw 

morphology, locomotor strategy during prey capture, mechanotactile reception, or the ability to 

manipulate water flow.   

The single phylogenetically corrected kinematic variable that correlated to the presence 

of cephalic lobes was increased horizontal movement of the cephalic lobes during prey capture.  
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Lobed species have a gap between the cephalic lobes and pectoral fins, where no radials are 

present. As the cephalic lobes are depressed, they fan out horizontally to form a barrier at the 

anterior and lateral part of the head, helping to occlude this gap to prevent prey from escaping.  

Lobeless batoids that utilize the entire body for prey capture do not need to fan out the pectoral 

fins, as the pectoral fins expand anteriorly, laterally and posteriorly from the rostrum to the 

pelvic fins and tail, preventing prey from escaping in all directions.    

 

CONCLUSIONS 

 The cephalic lobes are novel structures found exclusively in pelagic, oscillatory 

myliobatids (Aetobatus, Aetomylaeus, Manta, Mobula, Myliobatis and Rhinoptera).  With the 

evolution of the cephalic lobes came a concomitant shift to oscillatory locomotion and a pelagic 

habitat (Fig. 5.1).  Morphological changes to flatten and stiffen the pectoral fins occurred in 

response to shifts in locomotor style and the different demands.  As the requirements for 

oscillatory locomotion contradict the requirements needed for prey capture, the shift to 

oscillatory locomotion while maintaining the same feeding strategy would have been extremely 

difficult without the cephalic lobes.  Other batoid species have developed different strategies for 

feeding in the water column despite the lack of cephalic lobes.  One out of approximately 90 

species in the family Dasyatidae, the pelagic stingray, Pteroplatytrygon violacea, is pelagic and 

moves in the water column using locomotion intermediate between undulation and oscillation 

(between half to one wave length along the pectoral fin) but feeds in the water column, wrapping 

its pectoral fins around fish or squid (Jordan, 2008).  Torpedo rays, of the family Torpedinidae, 

are pelagic, but utilize body-caudal-fin locomotion (Roberts, 1969) and feed in the water column, 
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wrapping their pectoral fins around prey and stunning them via electric organs (Wilson, 1953; 

Lowe et al., 1994).  Butterfly rays, of the family Gymnuridae, are benthic and utilize undulatory 

locomotion on the substrate but shift to locomotion intermediate between undulation and 

oscillation when feeding on fish in the water column (Rosenberger, 2001), presumably using 

their pectoral fins to wrap around fish.  While other batoids have utilized different strategies to 

feed in the water column, the myliobatids are the only pelagic batoid species that utilize 

oscillatory locomotion (less than half a wave along the pectoral fin), and possess cephalic lobes, 

with the aetobatids and rhinopterids feeding on benthic organisms and mobulids filter feeding on 

plankton in the water column.  The ability to partition locomotor function to the pectoral fins and 

prey capture to the cephalic lobes allowed these batoids to exploit pelagic habitats, attaining 

high, sustained cruising speeds that increase their home ranges and possibly expand their niches 

and resources while still maintaining the ability to successfully feed on benthic organisms with 

the dexterous cephalic lobes. The cephalic lobes provide an interesting and innovation solution to 

the trade-off between the high maneuverability needed for prey capture and the stiffness required 

for oscillatory locomotion. 
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TABLES AND FIGURES 

 

 

Fig. 5.1  Batoid phylogeny from Aschliman et al. (2013) with 22 of the 23 families represented.  
Locomotor data based on Rosenberger and Westneat (1999), Rosenberger (2001), Schaefer and 
Summers (2005), Rosenblaum et al. (2011), Blevins and Lauder (2013).  Missing locomotor data 
was estimated using the pectoral fin aspect ratio as a predictor of locomotor mode (Fontanella et 
al., 2013).  Habitat data was compiled from Bigelow and Schroeder (1953) and Compagno 
(2009).  Cephalic lobe data was compiled from Bigelow and Schroeder (1953), McEachran and 
Carvalho (2002). 

 

 

 



www.manaraa.com

  129 

 

 

 

APPENDICES



www.manaraa.com

  130 

APPENDIX A 

Results of a Pearson correlation using uncorrected data.  The correlation coefficient (r) is the shaded value, p-value is unshaded.  
Significant correlations are highlighted in red.   
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Results of a Pearson correlation using uncorrected data (continued).  The correlation coefficient (r) is the shaded value, p-value is 
unshaded.  Significant correlations are highlighted in red. 
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APPENDIX B 

Results of a Pearson correlation using phylogenetically corrected data. The correlation coefficient (r) is the shaded value, p-value is 
unshaded.  Significant correlations are highlighted in red. 
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Results of a Pearson correlation using phylogenetically corrected data (continued). The correlation coefficient (r) is the shaded value, 
p-value is unshaded.  Significant correlations are highlighted in red. 
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APPENDIX C 

Scatterplots of the x positivized contrasts versus y contrasts.   
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